
Conceptual Specimen Architecture 1

A Conceptual Specimen Architecture for an Intelligent Archive in a
Knowledge Building System

Abstract

For the past two years, NASA s Intelligent Systems Project, a part of the Computing,
Information and Communications Technology Program, has sponsored research in a
number of technologies broadly related to the theme of Intelligent Data Understanding
(IDU). One of these research projects concerns Intelligent Archives, with an emphasis on
the role of an Intelligent Archive in the context of a Knowledge Building Systems (IA-
KBS). After defining a conceptual IA-KBS architecture, the IA-KBS project focused on
the potential for the algorithms and technologies being developed by other IDU
researchers to realize some of the envisioned IA-KBS capabilities. To that end, it has
been proposed that an IA test bed be developed which would clearly demonstrate the
applicability and utility of the various research efforts sponsored by the IDU area of the
IS project. Previous work surveyed the various IDU research projects and identified
opportunities for their associated algorithms, technologies and architectures to contribute
to such a test bed. The most important conclusion of that paper was that, depending on
the selected scenario, any one of the research projects reviewed could usefully be
included in an appropriately architected test bed environment.

The current paper carries this work forward by proposing a Conceptual Specimen
Architecture for the IA/KBS. The paper has four main sections and a brief conclusion.
The first section focuses on required functionality, and shows how the IDU research and
algorithms logically and functionally fit within the CSA. The second section reviews the
current state-of-the-art in cyberinfrastructure technologies, concluding that the necessary
components are available to provide the necessary system-level interfaces. The third
section proposes three compelling use cases, illustrating by specific example how the
IDU research, implemented within an Intelligent Archive, can support KBS objectives.
The fourth section represents a transition to the next phase of research by describing an
achievable software architecture for the IA-KBS within which the capabilities described
in the first three sections could be implemented. The paper concludes that a solid
technical basis exists to support prototyping and demonstration of the key IA/KBS
technologies.

Conceptual Specimen Architecture 2

Table of Contents

Abstract (page 1)

Table of Contents (page 2)

1. Functional Decomposition of the KBS/IA (page 4)
1.1 System Control and Administration
1.2 Import, Export, and Web Interface
1.3 Data Mining
1.4. Event Detection
1.5 Feed-back
1.6 Data Quality
1.7 Virtual Products
1.8 Data Access
1.9 Metadata and Libraries
1.10. Internal Users
1.11 External Users
1.12 IS/IDU Research Projects and Algorithms Applicability to the KBS/IA

2. Emerging Cyberinfrastructure (page 19)
2.1 Introduction
2.2 Service Oriented Architecture and distributed services
2.3 SOA and the Web
2.4 SOA and the Grid

2.4.1 Introduction
2.4.2 Lessons learned

2.5 SOA and interoperable standards
2.6 SOA and OGC technologies

2.6.1 Introduction
2.6.2 Lessons learned

3. Use Cases (page 25)
3.1 Use Case 1: Feed-back
3.2 Use Case 2: Background data mining using XFM
3.3 Use Case 3: Large scale data mining for science research

Development, Validation, Registration
Optimization
Production
Considerations

3.4 Use cases involving remote exploration

Conceptual Specimen Architecture 3

4. Top-Level Software Architecture and Specimen Design (page 34)
4.1 Block Diagram of the Top-Level Software Architecture

4.1.1 The architecture of traditional archive with no intelligent data
understanding
4.1.2 The architecture of standalone archives with limited intelligent data
understanding
4.1.3 The architecture multiple connected archives
4.1.4 The service oriented software architecture of knowledge building
system and intelligent archive
4.1.5 Top-Level Software Architecture of KBS/IA and Specimen Design

4.2 Key Components and Interfaces
4.2.1 Client/user interface layer
4.2.2 IDU algorithm and service layer
4.2.3 Catalog
4.2.4 Archive Storage

4.3 Service and Data Flows
4.4 OWL-S Examples for Kumar s Algorithms

4.4.1 Top level service definition
4.4.2 Service profile

5. Conclusions (page 48)

References (page 49)

Conceptual Specimen Architecture 4

1. Functional Decomposition of the KBS/IA

The purpose of this section is to present a top-level Functional Block Diagram of a
Conceptual Specimen Architecture for an Intelligent Archive operating as or within a
larger Knowledge Building System.

The discussion will be divided into 12 parts. We begin, in this introduction, with the top-
level Functional Block Diagram (FDB), showing the major components (of which there
are eight) as well as types of internal and external users and key data structures. In the
final section, we will review the Intelligent Data Understanding research projects and
associated algorithms examined in previous work [9], and show how these algorithms
map onto the FBD that is, which components and sub-components they might be able
to support.

Below is shown the full Top Level Functional Block Diagram for the KBS/IA.

The numbering scheme within the FBD corresponds to the following sections, in which
each of the eight top level functional components, and sub-components, will be described
and discussed (§1.1

§1.8), along with data structures (§1.9), users (§1.10, §1.11), and
applicable IS/IDU research programs and algorithms (§1.12)

Because this is a top-level functional diagram, the explicit dependencies as well as data
movement and the passing of control are not easily represented. These matters will be

STAT
1.1

PTP
7.1

7. VP

11.5
Peer
IA s

EXPT
2.2

WWW
2.3

IMPT
2.1

11.6
Product
Subscribers

2. IE

11.3
User

11.1
Sensor
Input

CACH
8.3

MDBS
8.2

STOR
8.1

8. DA

PRDG
7.2

OPT
1.2

1. SC&A

SPF
5.3

APIF
5.2

SWIF
5.1

5. FB
11.2
Sensor
Web

11.4
Appl n
DSS

DMS
6.3

FILT
6.2

PMD
6.1

6. DQ

O/D/I/K

O/D/I/K

4. ED

IDS
4.1

CBR
4.2

I&KB
3.3

XFM
3.2

DPRP
3.1

3. DM

HIGH PERFORMANCE BUS

AD&V
1.3

9.1 9.9

Archive MD
System Status
System Logs
User Profiles
Alg. Libraries
Alg. MD
Product MD
Science Models
System Models

10.1 Admin.
10.2 Val n
10.3 Policy

Top-Level Functional Block Diagram of KBS-IA

Data

Information

Knowledge

STAT
1.1

STAT
1.1

PTP
7.1

PTP
7.1

7. VP

11.5
Peer
IA s

EXPT
2.2

EXPT
2.2

WWW
2.3

WWW
2.3

IMPT
2.1

IMPT
2.1

11.6
Product
Subscribers

2. IE

11.3
User

11.1
Sensor
Input

CACH
8.3

CACH
8.3

MDBS
8.2

MDBS
8.2

STOR
8.1

STOR
8.1

8. DA

PRDG
7.2

PRDG
7.2

OPT
1.2

OPT
1.2

1. SC&A

SPF
5.3

SPF
5.3

APIF
5.2

APIF
5.2

SWIF
5.1

SWIF
5.1

5. FB
11.2
Sensor
Web

11.4
Appl n
DSS

DMS
6.3

DMS
6.3

FILT
6.2

FILT
6.2

PMD
6.1

PMD
6.1

6. DQ

O/D/I/K

O/D/I/K

4. ED

IDS
4.1

IDS
4.1

CBR
4.2

CBR
4.2

I&KB
3.3

I&KB
3.3

XFM
3.2

XFM
3.2

DPRP
3.1

DPRP
3.1

3. DM

HIGH PERFORMANCE BUSHIGH PERFORMANCE BUS

AD&V
1.3

AD&V
1.3

9.1 9.9

Archive MD
System Status
System Logs
User Profiles
Alg. Libraries
Alg. MD
Product MD
Science Models
System Models

10.1 Admin.
10.2 Val n
10.3 Policy

Top-Level Functional Block Diagram of KBS-IA

DataData

InformationInformation

KnowledgeKnowledge

Conceptual Specimen Architecture 5

touched upon to some extent in the discussion that follows; and to assist the reader, we
have provided a diagram of Functional Dependencies (see Table below) between the
components and sub-components that may help to clarify the underlying relationships.
These will also become clearer when we discuss, in detail, example Use Cases in Section
3 below.

1.1 System Control and Administration [SC&A]

This function manages and optimizes the work of the other functional components. It
keeps track of the state of the components, the work queues, and the hardware resources
that have been assigned to support the components. It also has models (developed using
Data Mining on usage logs) for stochastically estimating future loading and developing
optimized work plans. This also comprises the tasks of developing, validating and
registering the various knowledge building algorithms that other functional components
rely on to perform their tasks.

1.1.1 Current and Estimated System Status [STAT]

This function keeps track of the current state of the system: what jobs are
running, what hardware resources are utilized and available, what current
networking loading is, etc. It also has the capability to predict future loading
using KBS models developed from data mining system usage logs. It

1 . S C & A
1 . 1 S T A T
1 . 2 O P T
1 . 3 A D & V

2 . I E
2 . 1 I M P T
2 . 2 E X P T
2 . 3 W W W

3 . D M
3 . 1 D P R P
3 . 2 X F M
3 . 3 I & K B

4 . E D
4 . 1 I D S
4 . 2 C B R

5 . F B
5 . 1 S W IF
5 . 2 A P D S
5 . 3 S P

6 . D Q
6 . 1 P M D
6 . 2 F IL T
6 . 3 D M S

7 . V P
7 . 1 P T P
7 . 2 P G

8 . D A
8 . 1 S T O R
8 . 2 M D B S
8 . 3 C A C H

S
T

A
T

O
P

T

A
D

&
V

IM
P

T

E
X

P
T

W
W

W

D
P

R
P

X
F

M

I&
K

B

ID
S

C
B

R

S
W

IF

A
P

D
S

S
P

P
M

D

F
IL

T

D
M

S

P
T

P

P
G

S
T

O
R

M
D

B
S

C
A

C
H

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X

X

X

X
X
X

X

X

X

X
X

X

X

X
X

X

X
X

X
X

X

X

X

X
X

X

X

X

X

X
X

X

X
X

X
X
X

X

X
X
X

X

X
X
X

X

X

X
X

X

X
X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

X

X
X

X
X

X
X
X

X

X

X

X
X

X
X
X

X
X

X

X
X

X

X
X
X

X
X
X

X
X

X
X

X

X
X

X

X
X

X

X

X

X

X
X

X
X

X
X

X

X

X

X
X

X

X

X

X
X

X
X

X
X

X

X
X
X

S C & A IE D M E D F B D Q V P D A

1 . S C & A
1 . 1 S T A T
1 . 2 O P T
1 . 3 A D & V

2 . I E
2 . 1 I M P T
2 . 2 E X P T
2 . 3 W W W

3 . D M
3 . 1 D P R P
3 . 2 X F M
3 . 3 I & K B

4 . E D
4 . 1 I D S
4 . 2 C B R

5 . F B
5 . 1 S W IF
5 . 2 A P D S
5 . 3 S P

6 . D Q
6 . 1 P M D
6 . 2 F IL T
6 . 3 D M S

7 . V P
7 . 1 P T P
7 . 2 P G

8 . D A
8 . 1 S T O R
8 . 2 M D B S
8 . 3 C A C H

S
T

A
T

O
P

T

A
D

&
V

IM
P

T

E
X

P
T

W
W

W

D
P

R
P

X
F

M

I&
K

B

ID
S

C
B

R

S
W

IF

A
P

D
S

S
P

P
M

D

F
IL

T

D
M

S

P
T

P

P
G

S
T

O
R

M
D

B
S

C
A

C
H

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X

X

X

X
X
X

X

X

X

X
X

X

X

X
X

X

X
X

X
X

X

X

X

X
X

X

X

X

X

X
X

X

X
X

X
X
X

X

X
X
X

X

X
X
X

X

X

X
X

X

X
X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

X

X
X

X
X

X
X
X

X

X

X

X
X

X
X
X

X
X

X

X
X

X

X
X
X

X
X
X

X
X

X
X

X

X
X

X

X
X

X

X

X

X

X
X

X
X

X
X

X

X

X

X
X

X

X

X

X
X

X
X

X
X

X

X
X
X

S C & A IE D M E D F B D Q V P D A

Functional Dependencies

1 . S C & A
1 . 1 S T A T
1 . 2 O P T
1 . 3 A D & V

2 . I E
2 . 1 I M P T
2 . 2 E X P T
2 . 3 W W W

3 . D M
3 . 1 D P R P
3 . 2 X F M
3 . 3 I & K B

4 . E D
4 . 1 I D S
4 . 2 C B R

5 . F B
5 . 1 S W IF
5 . 2 A P D S
5 . 3 S P

6 . D Q
6 . 1 P M D
6 . 2 F IL T
6 . 3 D M S

7 . V P
7 . 1 P T P
7 . 2 P G

8 . D A
8 . 1 S T O R
8 . 2 M D B S
8 . 3 C A C H

S
T

A
T

O
P

T

A
D

&
V

IM
P

T

E
X

P
T

W
W

W

D
P

R
P

X
F

M

I&
K

B

ID
S

C
B

R

S
W

IF

A
P

D
S

S
P

P
M

D

F
IL

T

D
M

S

P
T

P

P
G

S
T

O
R

M
D

B
S

C
A

C
H

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X

X

X

X
X
X

X

X

X

X
X

X

X

X
X

X

X
X

X
X

X

X

X

X
X

X

X

X

X

X
X

X

X
X

X
X
X

X

X
X
X

X

X
X
X

X

X

X
X

X

X
X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

X

X
X

X
X

X
X
X

X

X

X

X
X

X
X
X

X
X

X

X
X

X

X
X
X

X
X
X

X
X

X
X

X

X
X

X

X
X

X

X

X

X

X
X

X
X

X
X

X

X

X

X
X

X

X

X

X
X

X
X

X
X

X

X
X
X

S C & A IE D M E D F B D Q V P D A

1 . S C & A
1 . 1 S T A T
1 . 2 O P T
1 . 3 A D & V

2 . I E
2 . 1 I M P T
2 . 2 E X P T
2 . 3 W W W

3 . D M
3 . 1 D P R P
3 . 2 X F M
3 . 3 I & K B

4 . E D
4 . 1 I D S
4 . 2 C B R

5 . F B
5 . 1 S W IF
5 . 2 A P D S
5 . 3 S P

6 . D Q
6 . 1 P M D
6 . 2 F IL T
6 . 3 D M S

7 . V P
7 . 1 P T P
7 . 2 P G

8 . D A
8 . 1 S T O R
8 . 2 M D B S
8 . 3 C A C H

S
T

A
T

O
P

T

A
D

&
V

IM
P

T

E
X

P
T

W
W

W

D
P

R
P

X
F

M

I&
K

B

ID
S

C
B

R

S
W

IF

A
P

D
S

S
P

P
M

D

F
IL

T

D
M

S

P
T

P

P
G

S
T

O
R

M
D

B
S

C
A

C
H

X

X

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X

X

X

X
X
X

X

X

X

X
X

X

X

X
X

X

X
X

X
X

X

X

X

X
X

X

X

X

X

X
X

X

X
X

X
X
X

X

X
X
X

X

X
X
X

X

X

X
X

X

X
X
X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X
X

X
X

X

X
X

X
X

X
X
X

X

X

X

X
X

X
X
X

X
X

X

X
X

X

X
X
X

X
X
X

X
X

X
X

X

X
X

X

X
X

X

X

X

X

X
X

X
X

X
X

X

X

X

X
X

X

X

X

X
X

X
X

X
X

X

X
X
X

S C & A IE D M E D F B D Q V P D A

Functional Dependencies

Conceptual Specimen Architecture 6

accomplishes this by using the services of I&KB algorithms within the DM
functional component.

1.1.2 System Optimization [OPT]

This function is responsible for automatically optimizing system performance in
accordance with current and predicted loading and prioritization models provided
by administrative personnel. We might imagine, for example, that this function
uses Model Predictive Control (MPC) or related technologies to respond
dynamically to uncertain events. This function also provides optimization
services to PTP to support distributed product generation and DM production.

1.1.3 Algorithm Development and Validation [AD&V]

This is where algorithms to be used by the various knowledge building
components (DM, DQ, ED, etc.) are developed, validated, and registered. This is
a manually intensive process, and will typically require interactive monitoring and
supervision by scientists and algorithm specialists. This function can build
training and test sets by utilizing other capabilities (e.g., CBR) in order to
construct and optimize KBS algorithm performance. This is also where the
metadata describing the performance characteristics of each algorithm is
constructed and entered (see §1.9.6).

1.1.4 Other functionality not shown

SC&A is where the user interfaces to monitor the system reside, and where
parameters reflecting policy and priorities are entered and maintained. One might
imagine log data on cost, reliability, hardware and software configurations,
installation and facilities diagrams, etc. All of this standard system management
and administration data and software resides in SC&A.

1.2 Import, Export, and Web Interface [IE]

This is a generic function required by any archive, intelligent or otherwise.

1.2.1 Import [IMPT]
This is the interface to the high performance input data stream from any sensor
inputs to the IA.

1.2.2 Export [EXPT]

This interface to the high performance output network supplies large volumes of
data to product subscribers and users and to their systems.

1.2.3 Internet Interface [WWW]

Conceptual Specimen Architecture 7

This is where the web pages for the IA reside. This includes the development and
update of those pages, firewalls, and system security (user registration,
authentication, access privileges, cost accounting, etc.).

1.3 Data Mining [DM]

This functional area is concerned with the application of information and knowledge
building algorithms to large amounts of data resident in IA storage. As such, it must
support high volume data flows from and to DA resources. The FDB shows a notional
flow of information entering the DM functions, and knowledge flowing out. It is also
possible for DM to support flows that accept data (or even observations) as input, and
that produce information (or even data) as output. Thus, DM is seen to be a key
functional component within the KBS conceptual architecture.

1.3.1 Data Preparation [DPRP]

Many data mining algorithms require a variety of reduction and transformation
steps before the raw inputs, as taken directly from archive storage, are ready to
be input to the KB algorithms. This function may therefore utilize the services of
a variety of other components: data quality filtering, product generation (and
distributed product generation via PTP), content based retrieval, etc. The output
of this function is typically not permanently stored, but is directly consumed by
the DM algorithm that requested its services.

1.3.2 Data Transforms [XFM]

This function is where non-application-specific algorithms reside. These
algorithms transform the input data into a representation in some other basis
which can then serve as raw input to other DM processes. The outputs of XFM
algorithms will often be permanently stored, and can be considered as a kind of
secondary, or shadow, archive sitting beside the data as originally received from
the input sensors. Running XFM algorithms on data can (and often will) be done
speculatively, betting that some as-yet-unknown DM process (or user) will be
able to find a use for the data as represented in this form. Thus, in one mode of
operation, XFM algorithms operate more or less continuously, and somewhat
blindly, as background processes. As will be seen below (§1.12.2, §1.12.11),
IS/IDU research by both Tilton and Emerson fits well into this functional area.
XFM may also be used by VP to generate product on demand, or by DPRP to
prepare data (or information) for subsequent processing.

1.3.3 Information and Knowledge Building Algorithms [I&KB]

This is the beating heart of the KBS functionality the place at which the
various types of data mining and knowledge building algorithms are applied.

Conceptual Specimen Architecture 8

Many of the services provided by other components are expressly included so as
to enable this component. Algorithms are developed and validated (AD&V),
scientific priorities are established, and an optimized (and dynamically re-
optimized) work flow is created and implemented (OPT). Data is then prepared
for input (DPRP), perhaps drawing on distributed resources (PTP), and
implementing distributed versions of the DM algorithm (again, PTP). The results
of this process are then made directly available to users (EXPT or APIF), and
may also become part of the permanent archive (DA).

It is worth emphasizing a point glossed over above: I&KB is where distributed
data mining algorithms reside, but PTP is where the negotiations with other IA
peers takes place, and OPT is where the optimized decisions are made about
where, within the GRID, processing should take place. In other words, efficient
distributed data mining requires the close co-operation of I&KB, PTP, and OPT,
as well of their counter-parts in other peer IA systems.

1.4. Event Detection [ED]

As shown in the FBD, notionally we expect this functional component to accept data as
input and produce information as output. Thus, in the O

D

I

K KBS hierarchy,
ED will generally operate at a level below that of DM. As such, ED focuses not so much
on finding relationships as on extracting or identifying inherent characteristics or features
via pattern matching. Thus, the event which is detected is the presence of some feature
within the data set being examined. ED functions are capable of being applied to very
large aggregations of data (for example, the real-time input data stream from the sensor
sources) looking for such occurrences. Key performance measures for these types of
functions are (1) throughput and (2) Type I and Type II error rates (that is, false positives
and false negatives). As with other KBS functions, the algorithms used by ED will first
undergo a development, validation, and registration process (AD&V), and will be
invoked in an optimized fashion by SC&A control processes.

1.4.1 Input Data Stream [IDS]

This functional sub-component is integrally tied into the ingest process. It thus
provides a key service to near-real-time feed-back (FB) by detecting and
reporting occurrences of interest (say) within a larger Sensor Web. It also
supports DQ/FILT by searching for patterns that may indicate bias or error.

1.4.2 Content Based Retrieval [CBR]

Here, the event of interest is some screening criteria to be used to down-select
from a large data source a subset (presumably small) that satisfies a condition of
interest. Note that, in OODB terms, this function might be performed in a
massively parallel way via methods stored locally within the data structure itself.
Alternatively, the test may be located externally to the data, which passes under

Conceptual Specimen Architecture 9

the scrutiny of the filter (much as in IDS). This function may also be instantiated
as an ongoing back-ground process routinely generating metadata on large
collections of data for possible as-yet-unspecified future use.

1.5 Feed-back [FB]

This functional component is the means by which the KBS/IA participates in near-real-
time processes that are largely external to it. Event detection on the input data stream
(IDS) is an important enabler; but FB also provides access, via PRDG and PTP, to the
larger set of distributed archive resources and products.

1.5.1 Interface to the Sensor Web [SWIF]

The idea of the Sensor Web is for heterogeneous sensing systems to dynamically
co-operate in response to rapidly emerging collection opportunities. A key aspect
of this process is the detection of events within one sensor stream that could
trigger re-tasking by that sensor or other co-operating sensors. The services to
support such functionality are provided to the Sensor Web via this component.

1.5.2 Interface to Application Partner Decision Support Systems [APIF]

Sensor systems can play a significant role as inputs to NASA Application Partners
(such as FEMA, or the Weather Service). Typically, the interface will be to
automated Decision Support Systems maintained by those partners. This
functional component not only provides data and alerts to those systems; it also
provides access to the services of the IA (including its distributed peers via PTP)
as well as to the Sensor Web (via SWIF).

1.5.3 Sensor Performance Feed-back [SPF]

This interface provides feed-back to the input sensor regarding possible bias or
other degradation of input product quality. As such, it makes extensive us of DQ
and IDS services.

1.6 Data Quality [DQ]

This functional component provides assurance to users of archived data and products that
the delivered results are compatible, in pedigree and quality, with the expectations at the
user, application, or system interface.

1.6.1 Product MetaData [PMD]

When a data product is to be used as input to a KBS algorithm (or other model or
process), the scientific integrity of the result may depend upon the precise nature

Conceptual Specimen Architecture 10

of the production pedigree of that input data. For example, models change over
time as new features or modeling techniques are incorporated. Hence, a product
produced at one point in time using one version of a model may have different
numerical or other characteristics from a similar (or similarly named) product
generated at some other (earlier or later) time. The purpose of the PMD
functional component is to maintain the descriptive data structures (see §1.9.7)
that capture this pedigree, and to enforce rules reflecting scientific or algorithmic
dependencies and constraints involving these features.

1.6.2 Apply Data Quality Filters [FILT]

This is a special kind of event detection, where the event in question is the
presence of some computable feature indicating the presence of a fault or
discrepancy. Hence, FILT will typically rely on ED services. However, the input
data need not be (for example) the input data stream (IDS), but could be any
(perhaps very large) data set extracted from the archive.

1.6.3 Data Mining Support Services [DMS]

This is a special use of Data Quality functionality in which (for example) rule
based induction algorithms are made more efficient by retraining them on sets
where the data has been adjusted to remove outliers. This process (see §1.12.10
below) can be applied to any of a large variety of DM algorithms, and may be
considered as a supporting service to assist in the process of algorithm
development and validation (AD&V).

1.7 Virtual Products [VP]

This functional component consists of two major capabilities: (1) the ability to generate
products on demand; and (2) the functionality required to implement a distributed
archive and distributed data mining services.

1.7.1 Product Generation [PRDG]

This functionality provides standard and specialized products to subscribers
and/or to other KBS algorithms and functions. If the product already exists (as
the result, say, of the standard ingest process), then it is simply retrieved and
shipped. More interesting, however, is when the requested product does not
already exist, but must be created. The inputs to this process may be local or
remote; and may be homogeneous or heterogeneous. For example, fusion
algorithms may combine heterogeneous inputs into a single unified output. And
the inputs to this fusion process may be held locally, or may reside at multiple
distributed IA locations. In the latter case, they must be brought together, and the
fusion algorithm applied. This example gives some indication of the type of
processing this functional area provides. PRDG works closely with DPRP and

Conceptual Specimen Architecture 11

with FILT, and may be called to supply inputs to other KBS algorithms and
functions. It also relies on the distributed services provided by PTP, and the
production it initiates will be under the supervision and optimization of SC&A.

1.7.2 Peer-to-Peer Services [PTP]

This is one of the most complex, and important, functional components of the
system. It maintains all of the distributed aspects of the archiving function by
co-operating with its peer IAs. This includes such features as: global search and
retrieval (via globally maintained metadata and catalogs); distributed data mining;
and distributed product generation. We have placed PTP within the VP
functional component because product is a unifying theme to the distributed
aspect of the IA. The idea is to shield users, and user processes, from details
about (1) the location of input data sources and (2) the algorithms and models that
are used to generate the desired products. But this abstraction requires exactly the
type of global search capability and distributed processing provided by PTP.
PTP also works closely with OPT to determine where, within the GRID, a
distributed computation (be it data mining or product generation) should best take
place. Current and predicted loading across the group of peer IAs is one of the
key inputs to this optimization.

1.8 Data Access [DA]

1.8.1 Long Term Storage [STOR]

A key service provided by any archive, intelligent or otherwise.

1.8.2 Metadata Data Base System [MDBS]

Search and library services (see §1.9 below).

1.8.3 High Performance Disk Cache [CACH]

A key aspect of overall IA performance will be to optimize the use of the Disk
Cache. This includes such strategies as pre-fetch of data sets based on predictive
usage models (OPT), and co-operative participation in distributed production and
data mining (PTP). The throughput of any KBS algorithm that reads or writes
large volumes of data to STOR will be strongly affected by optimization of the
CACH services.

1.9 Metadata and Libraries

In this section, we will briefly describe nine important data repositories and the role of
each in overall system functionality.

Conceptual Specimen Architecture 12

1.9.1 Archive Metadata

This amounts to the searchable catalog of data sets and products currently held by
the IA in STOR. This catalog is also part of a distributed globally searchable
virtual catalog that includes the corresponding holdings of other peer IAs.

1.9.2 System Status

This data structure is updated by STAT, and used primarily by OPT. It contains
both current and predicted status and loading of system hardware and software.

1.9.3 System Logs

This data structure is the history of system usage. It is maintained by STAT, and
it can be mined by STAT to produce predictive models of system loading
correlated to a variety of events.

1.9.4 User Profiles

This is where system security data structures reside: authentication, user access
privileges, system time and storage thresholds, etc.

1.9.5 Algorithm and Application Libraries

A repository for the KBS and production software.

1.9.6 Algorithm Metadata

OPT will need to have performance models for the various DM and other
algorithms it may be called upon to schedule. The performance models and
associated parameters reside in this structure. When an algorithm is ready to be
registered, as end product of the AD&V process, this data structure is updated to
reflect the algorithm s performance characteristics and hardware requirements.

1.9.7 Product Metadata

As described in §1.6.1, the pedigree of the various products resident in the archive
must be maintained and automatically verified to ensure comparability between
and among data sources as well as compatibility with KBS algorithms and
modeling software. This data structure houses that information, as prepared and
written by PMD.

1.9.8 Science Models

A vetted library for use by DM and KBS algorithms and processes.

Conceptual Specimen Architecture 13

1.9.9 System Models

System performance models for use by system control and optimization
algorithms and processes.

1.10. Internal Users

1.10.1 Administration

These users run daily operations. They monitor system status, control user
profiles and privileges, respond to failures, install new hardware or software
entities, and generally ensure smooth day to day system functioning.

1.10.2 Model Development and Validation

These users work collaboratively with application and science partners to develop
and install new KBS models and algorithms. The AD&V functional component is
the principal place within the system where this activity occurs.

1.10.3 Policy and Priority

These users set over-all system priority based on a balance of science goals and
support for Application Partners. For example, of the wide variety of DM tasks
that could be run in the background, which will be selected for execution? Or, of
the wide variety of DM algorithms and/or research projects that might consume
AD&V resources, which will be selected for active development?

1.11 External Users

1.11.1 Sensor Input

The high performance network interface to the real-time input data stream from
the sensors and/or their Level 1 processes.

1.11.2 Sensor Web

The IA is one component of a network of sensors able to dynamically retask in
response to events or collection opportunities detected by one of its participating
nodes.

1.11.3 Interactive Users

Conceptual Specimen Architecture 14

Individuals or organizations that interface to the IA via the internet for tasking,
search, algorithm development, and science.

1.11.4 Application Partner Decision Support Systems

ADP equipment operated by Application Partners capable of receiving reports
from the IA and responding with requests for IA services (via APIF).

1.11.5 Peer Intelligent Archives

The IA is one of a group of peers that share data and services, and that co-operate
in the optimized execution of distributed KBS algorithms and product generation
(see PTP above).

1.11.6 Product Subscribers

Organizations and their systems capable of receiving IA products at high
bandwidth.

1.12 IS/IDU Research Projects and Algorithms Applicability to the KBS/IA

B
R

O
D

E
M

E
R

K
A

R
G

_1

K
A

R
G

_2

K
U

M
A

R

LE
M

G
N

N
E

M
A

N
I

P
A

V
E

L

S
M

LY
N

T
E

N
G

T
IL

T
O

N

1 . S C & A
1 .1 S T A T
1 .2 O P T
1 .3 A D & V

2 . IE
2 .1 IM P T
2 .2 E X P T
2 .3 W W W

3 . D M
3 .1 D P R P
3 .2 X F M
3 .3 I& K B

4 . E D
4 .1 ID S
4 .2 C B R

5 . F B
5 .1 S W IF
5 .2 A P D S
5 .3 S P

6 . D Q
6 .1 P M D
6 .2 F IL T
6 .3 D M S

7 . V P
7 .1 P T P
7 .2 P G

8 . D A
8 .1 S T O R
8 .2 M D B S
8 .3 C A C H

X
X
X

X

X
X

X

X
X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X
X

X

X
X

X

X
X
X

X

X
X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X

X

IS/IDU Research Applicability

B
R

O
D

E
M

E
R

K
A

R
G

_1

K
A

R
G

_2

K
U

M
A

R

LE
M

G
N

N
E

M
A

N
I

P
A

V
E

L

S
M

LY
N

T
E

N
G

T
IL

T
O

N

1 . S C & A
1 .1 S T A T
1 .2 O P T
1 .3 A D & V

2 . IE
2 .1 IM P T
2 .2 E X P T
2 .3 W W W

3 . D M
3 .1 D P R P
3 .2 X F M
3 .3 I& K B

4 . E D
4 .1 ID S
4 .2 C B R

5 . F B
5 .1 S W IF
5 .2 A P D S
5 .3 S P

6 . D Q
6 .1 P M D
6 .2 F IL T
6 .3 D M S

7 . V P
7 .1 P T P
7 .2 P G

8 . D A
8 .1 S T O R
8 .2 M D B S
8 .3 C A C H

X
X
X

X

X
X

X

X
X

X

X
X

X
X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X
X

X

X
X

X

X
X
X

X
X

X

X
X

X

X
X
X

X

X
X

X

X
X

X

X

X

X

X

X

X

X
X

X
X

X

X

IS/IDU Research Applicability

Conceptual Specimen Architecture 15

In this section, we will consider the role that advanced KBS algorithms and associated
technology might play in a KBS/IA. Our starting point is the set of research projects
studied at some length in previous work [9]. However, in addition to the nine research
projects surveyed there, we will also include two addition projects: the work of Tilton,
and of Emerson. As we will see, both of these fit well into the overall IA conceptual
specimen architecture.

The table above summarizes the results of this section. The research projects label the
columns, and the rows are labeled by the functional components and sub-components
from the FDB. An entry in the matrix represents a potential for the associated functional
components (row) to make effective use of the associated IS/IDU research (column). In
the following subsections, we will provide additional discussion of the various
contributions each project might play. That is, we have in effect sliced the matrix
column-wise, and for each functional component, we will indicate how the research area
might contribute to that functionality.

1.12.1 Brodley [BROD]

 Brodley has investigated boot-strap approaches to classification and clustering. Thus,
her algorithms do not depend on the availability of training sets, and derive prospective
classes (and associated classification rules) without relying on domain models. The
classification algorithms produced in this way can then be inspected by knowledge
experts to see if the classes generated by the algorithm have an interesting scientific or
economic underlying cause which would be of interest in its own right. If so, the
classification scheme can then be refined, and used for a variety of possible applications.

Within SC&A, both STAT and OPT could benefit from classification schemes that
identify trends in time series data. Both rely on the availability of good predictive models
for system utilization (i.e., data mining of the archive usage logs) something which
BROD should be well-suited to provide. AD&V could benefit from the fact that BROD
does not require training sets. This means that, in developing training data for other DM
algorithms, a BROD-based algorithm could potentially kick-start the development effort
by automatically extracting data sets of interest a kind of automatically self-generated
content-based retrieval.

I&KB is a generic place-holder for all sorts of KBS algorithms, of which BROD is
certainly one. We have already touched on the fact that BROD can support a kind of
boot-strapped CBR; and executing classification algorithms (like one produced by
BROD) is at the heart of input data stream event detection (IDS).

BROD algorithms will certainly need to be modeled using PMD data structures. Using a
BROD-based classifier for initial product error screening of input sensor data (SP) is a
possible application. The strong dependency of FILT on ED means that BROD should
be equally applicable to FILT functionality.

1.12.2 Emerson [EMER]

Conceptual Specimen Architecture 16

This research was not documented in the previous applicability study, but should play an
important role in a KBS/IA. The Emerson technology computes (and stores both as data
and metadata) the fractal dimension and associated geostatistical characterizations of
underlying imagery. This provides an alternative representation a transform of the
input data set that is independent of any particular science application that might choose
to use it (e.g., for data mining purposes). This algorithm is well-suited for executing
more-or-less unattended for long periods of time on very large portions of the archive.
The results (and searchable metadata) are then stored with association back to the input
sources, and can themselves now be inputs for a variety of other KBS techniques.

Along with TILT, then, EMER is a prime example of a XFM-style algorithm, and one of
those accessible as a generic DM work-horse (I&KB). EMER could also be used as one
step (e.g., a data conditioning algorithm) in an ED-style near-real-time data flow
(supporting either IDS or CBR). The fact that EMER will often be used in back-ground
mode over very long periods of time (months) on very large sets of data means that
metadata describing the production pedigree of the outputs will be important (PMD) as
well as optimized strategies for accessing long-term storage (STOR).

1.12.3 Kargupta Distributed Data Mining [KARG_1]

This is the first of two research areas within the Kargupta team. This one references
work performed on implementing distributed versions of standard large-scale data mining
techniques. Since the IA resides in a distributed environment with multiple IA peers, this
is an important and potentially very useful capability.

The development and validation effort for this type of processing is challenging,
especially when more than one IA is to participate in a production run (AD&V). As a
general purpose DM work-horse, KARG_1 algorithms reside in and contribute to I&KB
functionality. And the distributed nature of the processing means a strong connection to
and role within PTP functionality. The production pedigree for products resulting from
KARG_1 algorithms can be challenging, because of the very large number of
combinations of possible inputs and distributed processing contributions (PRD).

1.12.4 Kargupta Distributed Mining on Real-time Streams [KARG_2]

This research direction has a number of operational characteristics (e.g., near-real-time
time series analysis and signal processing) that suit it to collections of co-operating
embedded sensors/actuators. Finding possible roles for this technology in an IA is
challenging. However, we can propose the following possible uses.

Within the IA itself, monitoring and optimizing the utilization of the computing resources
(processors, storage, networking, etc.) is a near-real-time function that might be able to
utilitize KARG_2 functionality (STAT and OPT). However, it might be employed, it
seems to fit best into a data flow mode of operations, characteristic of IDS; and this, in
turn, could support FILT. As a distributed technique, PTP relationships will be critical,
and generic relationships to I&KB and PRDG appear to be applicable.

Conceptual Specimen Architecture 17

1.12.5 Kumar [KUMAR]

As discussed at some length in the applicability study [9], of all the IS/IDU projects
Kumar represents the best example of actually doing earth science using DM techniques
(in this case, clustering using both spatial and temporal correlations over very large
geographic regions). This means it has a role in I&KB that is different, and more
important, than generic DM functionality. It becomes an exemplar for how science can
be done using the KBS/IA capabilities. The extraction and conditioning of distributed
data (PRDG and PTP) are key steps in the KUMAR approach; and because of the fact
that KUMAR is mining time series data, there are embedded in it data management
techniques that will be useful for both STOR and CACH. In Use Case 3 (§3.3 below),
we examine these issues in greater detail for a KUMAR-like application.

1.12.6 LeMoigne [LEMGN]

This is the best example, among the IS/ISU researchers, of a fusion algorithm one that
accepts two (or more) compatible data sets as input, and produces a single composite
output. A good example of its utility is in DPRP (preparing raw data sets, via value-
added processing, into more usable, higher-level representations). The fact of multiple
independent (but compatible) data sources means that LEMGN can both utilize and
contribute to distributed PTP and PRDG techniques. This is also the first time we have
seen a strong potential contribution to the sensor web and application DSS (SWIF,
APDS) interfaces by providing the ability to generate composite representation that
enable detection and response in a feed-back loop scenario. And the need for strong
pedigree tracking both of the algorithm and the input sources comes with this type of
processing (PMD).

1.12.7 Nemani [NEMANI]

This research does not so much concern DM algorithms as processing architectures
capable of automatically assembling lower-level products of algorithms, via work flow
models, into finished user-oriented displays. As such, it focuses on architectural issues:
optimizing the work; assembling distributed and or heterogeneous components;
efficiently managing the computing resources, etc. This tends to place NEMANI in
regions of the FDB that are mostly neglected by other researchers: IMPT, EXPT,
WWW, OPT, SWIF, and APDS. The distributed aspects of the NEMANI approach
could contribute to both PRDG and PTP; and performance optimization clearly will
touch use of CACH.

1.12.8 Pavel [PAVEL]

While differing in technical details, at the application level both PAVEL and BROD
share the same functional space, with many of the same objectives. The application
domains for PAVEL include face and speech recognition; but the type of result returned
by his unsupervised clustering approach is very similar, at an abstract level, to that of

Conceptual Specimen Architecture 18

BROD. Hence the strong overlap of their functional applicability, including: all
functional sub-components in SC&A and ED as well as PRDG, PMD, FILT, SP, and
(of course) I&KB.

1.12.9 Smelyanskiy [SMLYN]

Like KARG_2, the technology is best applied to near-real-time time series or signal
processing data. As such, it does not fit well into the KBS/IA conceptual specimen
architecture presented here. Its ability to handle high data rates means that there is an
affinity and/or potential applicability to the CACH component, and (for similar reasons)
to the IDS component (that is, it might be able to sit on the ingest stream and perform
non-linear correlations or similar matched filter processing). We also speculate that it
might be able to perform specialized analysis, in near real time, of sensor performance
characteristics that might be useful as part of the SP feed-back process. The truth,
however, is that SMLYN fits better at the part of the O

D

I

K food chain that is
nearest to the sensor (e.g., in remote exploration scenarios and concepts of operation).

1.12.10 Teng [TENG]

This research, which has acquired the name of data polishing, is really a way of
retraining classifiers by using modified training sets from which outliers have been
polished away. Often the resulting version of the classifier is significantly more

compact, faster, and more accurate than the unpolished version. Thus TENG is best
suited to assisting in the development and optimization of other DM algorithms. The
place reserved in the FBD for this functionality is data mining support (DMS) within the
DQ component. Its major subscriber, AD&V, has also been called out, as well as I&KB,
the generic locale for all DM algorithmic techniques.

1.12.11 Tilton [TILTON]

In terms of applicability, this algorithm is virtually indistinguishable from EMER the
other new research area included in this analysis. Whereas EMER transforms and
extracts using fractal techniques, TILTON uses image segmentation based on
geostatistical measures of high or low local variability. This representation does not
require any science models, and (like EMER) can be thought of as a transform (XFM) of
the data into a space where certain types of relationships, correlations, and features may
be easier to detect. Thus, for example, long-term background processing of very large
data sets is an attractive concept of operations, with the associated areas of applicability
(IDS, CBR, and STOR).

Conceptual Specimen Architecture 19

2. Emerging Cyberinfrastructure

The purpose of this section is to review current or developing technologies that are likely
to provide significant infrastructure support for any KBS/IA implementation.

2.1 Introduction

The cyberinfrastructure for a knowledge-based intelligent archive will enable users from
a wide spectrum of research and application communities to access:

(1) high performance computing, networking, and communications;
(2) instruments that collecting data;
(3) data, information, and knowledge; and
(4) various services such as visualization, analysis and decision support.

Such a cyberinfrastructure will include organized and self-contained aggregates of
resources, including instruments, technologies, information, services, and standard
interfaces among different components. The components of such a cyberinfrastructure
can be grouped into two categories: (1) a pure hardware-related category such as network
bandwidth and computer hardware facilities; and (2) a middleware category which is
primarily software technology built upon available hardware facilities. The focus of the
following paragraphs will be on enabling architectures and technologies for the second of
these, the middleware requirements.

2.2 Service Oriented Architecture and distributed services

The requests to an IA are diverse and dynamic, and may require dynamic chaining of
multiple services available through different, and perhaps geographically distributed,
service providers. The service-oriented architecture (SOA) is designed to address such
requirements by constructing a distributed, dynamic, flexible, and re-configurable service
system using internet protocols and technologies as the back-bone.

The key component in the service-oriented architecture is services. A service is a well-
defined set of actions. It is self-contained, stateless, and does not depend on the state of
other services. Stateless means that each time a requester interacts with a service, an
action is performed. After the results of the service invocation have been returned, the
action is finished. There is no assumption that subsequent invocations are associated with
prior ones. In the service-oriented architecture, the description of a service is a
specification of the messages that can be exchanged between the requester and the
service. Standard-based individual services can then be chained together to solve
complex tasks. The basic operations in SOA include publish, find, bind, and chain
(Figure 2.1).

Conceptual Specimen Architecture 20

 Figure 2.1 The basic service operations

There are three types of actors in SOA: (1) the providers who make specific services
available over the Internet; (2) the requestors (users) who wish to access these services;
and (3) the brokers who help requestors to find the right services. When a service
provider sets up a service over the Internet for use by requestors, the service descriptions
must be published to a broker (e.g., a registry, catalog or clearinghouse). When a
requestor requests a service, the requestors and service brokers need to collaborate to find
the right services. Service requestors describe the kinds of services they re looking for to
the broker and the broker delivers the results that match the request back to the requestor.
After the right service is found, a service requestor and a service provider negotiate as
appropriate so the requestor can access and invoke services of the provider (bind). In
many cases, a sequence of services must be bound together to produce the user-desired
results (chain).

2.3 SOA and the Web

The SOA can be implemented using many different network environments. The two
environments of interest here are the Web and the Grid. Web services mean services
offered via the Web. The implementation of SOA in the web environment becomes Web
services. A typical Web services scenario is that a client sends a request to a service
provider at a given URL using certain protocol such as HTTP Get, POST, and SOAP.
The service processes the request upon receipt and returns a response. A simple example
of a Web service is a data subset service in which the client requests a data set within a
user-specified spatial bounding box and temporal interval; the data service is then to
return the data set that meets the client s specification. In this simple example, the
request can be met almost immediately, with the request and response being parts of the
same method call. A more complex scenario can involve chaining of different services
provided by either the same or different providers. For example, a client wants to obtain
a map at a given projected coordinate reference system. Services at the data provider site
can provide data but not a map; and the data are at a different projected coordinate
reference system from what was requested. In this case, the original request can only be
met by chaining the data provider s service with a data coordinate re-projection service

Broker

ProviderRequestor

1. Publish2. Find

3. Bind

Provider

4. Chain

Conceptual Specimen Architecture 21

and a data-to-map conversion service. In this chain, responses (outputs) from one service
may automatically be forwarded as operation requests (inputs) to the next service in the
chain.

Web services are self-contained, self-describing, modular applications that can be
published, located, and dynamically invoked across the Web. Web services perform
functions, which can be anything from simple requests, as shown in examples in the
previous paragraph, to complicated processes, such as extracting high level information
or knowledge from a set of heterogeneous data sources. Once a Web service is deployed,
other applications (and other Web services) can discover and invoke the deployed
service. Two characteristics provide the real power of web services:

 Everyone on the Internet can set up a web service to provide service to anyone who
wants many services will be available.

 The standard-based services can be chained together dynamically to solve
complicated tasks just in-time integration.

2.4 SOA and the Grid

2.4.1 Introduction

The Grid is a rapid developing technology originally motivated and supported from
sciences and engineering requiring high-end computing, for sharing geographically
distributed high-end computing resources ([10], [11], [12]). The vision of the Grid is to
enable resource sharing and coordinated problem solving in dynamic, multi-institutional
virtual organizations ([11]). The key for the Grid success is the open source middleware
called Globus Toolkit ([13], [14], [15]). It has become a de facto standard for all major
Grid implementations. The implementation of services in Grid environment becomes the
Grid services. Essentially, the Grid includes several types of middleware that can
perform such tasks as computing and data system discovery and access, uniform security
services, workflow management, fault management and recovery, large, complex, and
distributed data archive management. With these middleware services, the Grid can
provide on-demand, ubiquitous access to computing, data, and services and constructs
new capabilities dynamically and transparently from distributed services.

The latest major version of Globus is Globus 3.0 [10], which implemented the Open Grid
Service Architecture. The fundamental concepts of services in the Grid are the same as
the Web services. However, they do have differences. A Web service can be invoked by
any requestors over the Web while a Grid service can only be invoked by the requestors
within the virtual organization. The web service practices also have been extended in
Grid to accommodate the additional requirements of Grid services, including

Statefull interactions between consumers and services

Exposure of a web service s publicly visible state

Access to (possibly large amounts of) identifiable data

Service lifetime management

Conceptual Specimen Architecture 22

Currently the Grid and Web communities are converging through the Web Service
Resource Framework (WSRF, [14]).

2.4.2 Lessons learned

Much research has been done on the development of the Grid and many lessons have
been learned in different aspects of the Grid. These include:

Initialization, installation, configuration, and operation are not easy tasks,
including challenges in technical, organizational, and policy aspects.

Software requirements are dependent on applications and on middleware used by
applications.

It is difficult to maintain consistency between different Grid sites, such as the
stability and availability of resources, level of system dedication, level of
expertise and area of interest of users/developers/administrators, version update of
required environments and tools (e.g., Globus Toolkit).

Close collaborations among discipline and computer scientists and among
different communities are important but are sometime difficult.

Standard infrastructure is very important, including interface, resources
description and access.

2.5 SOA and interoperable standards

In order for SOA to work, interoperability standards related to all aspects of service
operations are required. The major international bodies setting the web service standards
are World-Wide Web Consortium ([22]) and Organization for the Advancement of
Structured Information Standards ([18]). The body that sets the Grid service standards is
the Global Grid Forum ([14]). The major standards related to Web services are shown in
Figure 2.2. In addition to the general Web services, The Open Geospatial Consortium
(OGC, formerly named OpenGIS Consortium) aims the development of interoperable
standards for geospatial Web services implementation standards based on content and/or
abstract standards set forth by various organizations including ISO, FGDC, and INCITS,
as well as technology standards developed by W3C and OASIS.

U D D I

W SD L

X M L

SO A P

X M L

Service
B ind ing

Stack

(B ind)

Service
D escr iption Sta ck

(P ublish)

Service
D iscovery Stack

(F ind)

H T T P

SSL

H T T P

Security
Stack

B E P L

M odeling &
W o rkflo w

Sta ck

(C ha in)

X M L

Figure 2.2 The major Web services standards

Conceptual Specimen Architecture 23

2.6 SOA and OGC technologies

2.6.1 Introduction

OGC has successfully executed several phases of the OGC Web Services (OWS) initiative,
including Web Mapping Testbed I (WMT) phase I and phase II, and OWS 1.1, 1.2, and 2.0.
These OGC activities were mainly intended to advance interoperable geospatial Web
services technology, support development of multi-vendor portable demonstration, and
feed requirements and recommendations into OGC s standard specification process. The
activities helped to identify issues concerning the lack of interoperability among systems
that process geospatial data, and helped to develop, test, and demonstrate consensus-
based implementation specifications. Current status is that a set of Web-based data
interoperability specifications has been established. These include:

Web Mapping Specification (WMS), which allows interactively assembling maps
from multiple servers;

Web Coverage Service (WCS) Specification, which defines interface for accessing
rater (grid, image) type geospatial data, especially those of remote sensing data, from
multiple coverage servers;

Web Feature Service (WFS), which defines interface for accessing feature (vector)
type geospatial data;

Web Registry Service (WRS), which specifies data and service publishing and
discovery interface;

Web Coordinate Transfer Service (WCTS), which defines interface for performing
coordinate transformation of geospatial data; and

Web Image Classification Service (WICS), which specifies interface for classifying
image type data.

These specifications allow publishing, searching, and access to geospatial data and services
in a distributed environment, regardless of data format, coordinate reference system,
spatial/temporal resolution, and geographic locations of data archives and service providers.

2.6.2 Lessons learned

A number of OGC testbeds and initiatives had been successfully conducted in developing
interoperable standard interfaces. Lessons learned from these activities include:

Interoperable, standard compliant interface significantly improve the publishing,
discovery, and access to geospatial data and services.

Development of interoperable standard interface is required for Web services but
formal adoption of such standard interfaces may take some time. Most OGC
testbeds and initiatives were run at very fast tracks (e.g., six months). Several
rounds of revisions and implementation tests/demonstration were usually needed
to reach a stable specification. For example, the first version of the WCS
specification, version 0.5, was completely tested in November, 2001. It was

Conceptual Specimen Architecture 24

updated to versions 0.7, 0.8, 0.85, 0.86, 1.0.0, and now 1.0.20 as of September,
2004. Revisions will still be needed before it can be finally considered stable
specification.

Collaboration and consensus among different users, vendors, organizations, and
communities are important to the successful development of standard interface.
There are always ambiguities for clients and service providers to adopt OGC
specifications, especially concerning terminologies, parameters, keywords used
differently among different people. The process of reaching consensus can be
lengthy and onerous.

Conceptual Specimen Architecture 25

3. Use Cases

In this section, we will present three use cases to illustrate the intended concept of
operations for the Conceptual Specimen Architecture described in Section 1. Three use
cases will be presented: (1) a use case based on near-real-time feed-back to an
application partner, relying on event detection functionality (§3.1); (2) a data mining use
case relying on on-going back ground processing using a data transformation algorithm
(§3.2); and (3) a data mining use case focused on a specific research question in Earth
Science (§3.3). A final section (§3.4) then discusses how the knowledge building
technologies described for an Intelligent Archive are also applicable to remote
exploration scenarios, such as manned or unmanned missions to the Moon or to Mars.

3.1 Use Case 1: Feed-back

At a top level, the functionality provided by the KBS/IA will perform automated event
detection in near-real-time on an incoming data stream from an earth observing sensor
(such as MODIS or AMSU). The event detection processing is incorporated into the
standard ingest processing flow for geographical areas of interest; and the detection of an
event (forest fire, infestation, algae plume, volcanic activity, etc.) is relayed to

Application Partner automated decision support software for analysis and response. In
the scenario we will present, the IA also provides the Application Partner with access to
other data mining capabilities (if required), and to the Sensor Web to obtain additional
observations in other spectra or at other resolutions.

We have broken the discussion into four areas: development, validation, and registration
of the event detection algorithm (§3.1.1); optimization (§3.1.2); production (§3.1.3); and
other capabilities and considerations (§3.1.4).

3.1.1 Development, validation, and registration of event detection algorithm

Before a KBS algorithm can be put into production, it must be validated, and parameters
that characterize its performance characteristics must be determined. The existing data
mining capabilities already in place can assist in this process. For example, suppose that
a high fidelity science model for the phenomena already exists, but that its performance
characteristics (in terms, say, of latency) do not meet the application requirements. In
that case, it may be useful to construct a tuned pattern matching algorithmic
implementation (say, using a neural net, or a support vector machine) that meets
classification accuracy requirements but that executes with acceptable latency. The data
mining facilities of the KBS/IA can extract training and test sets using the high fidelity
model, which are then used as input to the Artificial Intelligence algorithms. This is an
important aspect of the KBS/IA one generation of technology leveraging the next.

An administrative process oversees the selection of candidate development efforts based
on a prioritization of science needs, national policy, available resources, and risk. Staff
within the KBS/IA assists scientists and Application Partner representatives to specify
requirements, and the algorithm development process is then initiated. Functional

Conceptual Specimen Architecture 26

components that might come into play, at this stage, include (see the FBD from Section
1):

AD&V, to oversee the development and validation of the algorithm;

I&KB, for inferring a model of the event from available data;

CBR, for retrieving training data;

DMS, to assist in algorithm refinement and performance enhancement; and

PTP/PRDG/DPRP.

This last trio calls for some explanation. In order to automatically detect the event of
interest, it may be necessary to perform some preliminary data transformation (XFM) or
other processing, including as input data sources derived from peers in the distributed
network of KBS/IAs. Such preprocessing might include, for example, fusion of multiple
datasets into a single co-registered dataset. The working out of the specific form of the
required inputs, and arranging for them to be available from distributed peers, is to be
carried out by sub-components within VP with the participation of DPRP.

Models for the computational performance of the ED algorithm under development

throughput, access to secondary storage or disk cache, memory, etc. must also be
developed for use by the system optimization algorithms (in OPT) that oversee actual
production (for entry into the searchable Algorithm Metadata structures, §1.9.6).

3.1.2 Optimization

This portion of the use case, while conceptually distinct, has significant overlap with both
the development (§3.1.1) and production (§3.1.3) stages. The task, here, is to ensure that
the processing flow implementing the algorithm is optimized with respect to a number of
criteria: production priorities; physical data access (i.e., use of the high performance data
cache, pre-fetch, etc.); and production flow dependencies (so that work required by
multiple ingest stages need only be performed once). In the use case under consideration,
the ED algorithm is to be incorporated into the ingest production flow, via IDS. Where,
within that flow, to place the detector, and how to route the output (including any
metadata and logging data the ED algorithm may produce) is also part of the optimization
process.

There may also need to be negotiations with KBS/IA peers, if inputs from them are
required. Or, mutatis mutandis, it may be that a feed-back process from a distributed peer
requires input, and the production resources to provide it would then need to be made
available (subject to global prioritization policy). It may also be appropriate to develop
stochastic models for uncertain events: the likelihood of event occurrence, the false
alarm rate, the expected level of processing required should an event be detected and
verified (including increased user access to KBS/IA stores and products resulting from
the scientific interest in the event), etc.

Conceptual Specimen Architecture 27

These decisions, or production models, are the responsibility of OPT, using especially
the performance models held in Algorithm Metadata, and the services of VP/PTP.

3.1.3 Production

At this point, the ED algorithm is ready to be placed in the ingest production stream, via
IDS. If we assume (as seems reasonable) that interest will be focused on relatively small
geographical regions (e.g., north western Wyoming), then sensor access patterns to that
region can be used as triggers for implementing this special functionality, which need not
be continuously applied to all the incoming data. It is also likely, in this type of scenario,
that the algorithm will make use of change detection. This means that some amount of
history (short, if change detection is highly dynamic; or more lengthy, if trends over time
are to be used) must be available presumably, via pre-fetch into the high performance
data cache. And as noted above, it may also be required to access and fuse remotely held
related data, depending on algorithmic requirements.

When a possible event occurs (with some known false alarm rate), a sequence of
resulting actions is then set in motion. The AP/DSS is notified, together with whatever
associated data products may be required. This DSS then has available a number of
options. It may decide, using its own algorithms and/or expert review, that the event was
a false alarm. Or, it may request additional DM services from the KBS/IA (e.g.,
enhanced products or virtual products). Or, it may request dynamic retasking, via
FB/SWIF, of resources in the Sensor Web (assuming it does not have direct, independent
access of its own). Or, finally, it may choose to change the operational characterics of
the ED algorithm: changes to thresholds, or to production priority, etc. This input from
the AP/DSS to the KBS/IA is critical to providing optimized dynamic response based on
the actual properties of the event under consideration.

3.1.4 Other capabilities and considerations

During production, STAT is keeping track of the resources used, and access patterns
resulting from the detection of an event. These are entered into the System Logs, and then
become available for use by DM algorithms looking for usage and loading patterns. The
idea is that OPT can then use this type of data to improve its own stochastic models of
system utilization e.g., by pre-fetching historical data in the area of interest into CACH
to be ready to respond to anticipated user interest.

Of course, in the background are all the other on-going functions of the KBS/IA: the
normal ingest procedures, for example, including updating of metadata, execution of
required XFM algorithms on the input stream, transferal of data to STOR, etc. Part of
the job of OPT is to ensure that the ED functionality does not interfere with these
ongoing production requirements, and to optimize the flow in response to dynamic
occurrences consistent with administrative policy and priorities. As we mentioned briefly
in passing, it may also be necessary to support the ED/FB requirements of a peer, and the
associated loading on the local system (again, partly deterministic based on known sensor

Conceptual Specimen Architecture 28

access patterns, and partly stochastic based on uncertain event occurrence) should be
modeled and enter into optimization calculations.

3.2 Use Case 2: Background data mining using XFM

At a top level, a data transform algorithm is applied to large selections of the underlying
data archive. Typically (despite the notional flow in the FBD), such algorithms accept as
input data from the O

D

I

K KBS hierarchy, and produce either data (of a
transformed kind) or information as output, along with searchable descriptive metadata.
As will become clear during our discussion, such a transform is typically self-contained
(that is, it relies on nothing other than an input data entity) and is not focused on any
particular science problem (although the solution of science problems, or the building of
science models, may choose, if they wish, to utilize the transformed products). As such,
a transform is well-suited to implementation as a background process operating over an
extended period of time up to many weeks, or months in a prioritized order over very
large subsets of the archive.

As above, we have broken the discussion into four areas: registration of the transform
algorithm (§3.2.1); optimization (§3.2.2); production (§3.2.3); and other capabilities and
considerations (§3.2.4).

3.2.1 Registration of the transform algorithm

Unlike data mining algorithms (discussed in §3.1 above, and §3.3 below), transform
algorithms are typically developed independently of the archive, and cannot make use of
its data mining services (other than to provide examples of input data sets on which to
test the code). As a result, it is likely that a transform comes to the KBS/IA in close to
finished form, and need only be incorporated into the production libraries. This means
building a performance model (for use by the optimizer) as well as review by the
administrative oversight function that establishes production priorities. This review must
decide such matters as: which transform algorithms to execute, with what relative
priority, on which subsets of the archive, and in what order. Given the priority scheme
(in our envisioned use case, the overall priority is low, so that XFM operates as an
ongoing background process, consuming otherwise unused cycles) and the order in which
to process the target data sets, OPT can now schedule the XFM functionality.

The output of such a transform can, itself, be considered as a kind of product (typically at
the data or information KBS levels). In that case, it can be: (1) pre-computed (the case
of interest here, by XFM); (2) a virtual product (that, computed on-demand by VP); or (3)
computed as part of the ongoing ED or IMPT functional components. In practice, the
metadata that is produced as an auxillary to the transform is critical to utility, since the
transformed product itself may be nearly as large as the underlying data set from which it
was produced. From a processing perspective, these algorithms are typically highly
parallelizable, both internal to the algorithm and externally, across the independent input

Conceptual Specimen Architecture 29

data entities. As such, they may be able to make very effective use of special purpose
high performance parallel hardware (MIMD, SIMD).

3.2.2 Optimization

Given a performance model, priority, and order for processing, OPT is well-placed to
make efficient processing scheduling decisions. In addition, we note two other factors
OPT may wish to take into account. First is the physical data model for the output data
sets. This is a consideration for any product to be permanently placed in the archive, and
it depends on having some notion of how the data is intended to be used. The point is
that to access data by (say) time series at a single location is a very different operation
from access to data covering a large area but that was collected at a single time. How the
data is stored will determine, in large measure, how long a seek-and-retrieve operation
will take; and it may be possible for OPT to arrange these matters in advance (or to
provide multiple versions) to as to speed the DM application that will eventually access
the data.

This, in turn, bears on another performance enhancement namely, the staging of the
data to (on input) and from (on output) CACH. Again, OPT may be able to make
decisions that improve throughput, and that reduce the likelihood of conflict with other
ongoing processes (which may be subject to uncertain stochastic events requiring
dynamic reoptimization).

3.2.3 Production

The production strategy considered in this use case is simple: consume available unused
cycles to complete, over time, and as a background process, the transformation of
specified large subsets of the archive.

As mentioned briefly above, there are other production modes in which XFM-style
algorithms could be used, and we pause here to mention three of the most important.
First, it is possible to impose XFM algorithms as part of IMPT and IDS functionality. In
the case of IMPT, not only the data received from the sensor would be stored (along with
its metadata); but also the transformed version of the data (along with its separate
metadata). Thus, from a single input data stream there may arise two or more output data
streams for entry into STOR. Second, it is possible to utilize an XFM algorithm as part
of ED for example, as discussed in §3.1, in support of FB functionality. Here, the
product of XFM is immediately consumed, and is not stored for later retrieval. And third,
it is possible that XFM might be invoked as part of VP functionality, either returning an
on-demand product to a local user, or in support of a user process located at a distributed
peer in the KBS/IA network.

Another important aspect of production functionality is support for PMD. Recall that this
is the function that keeps track of the production pedigree of the various products stored
in the archive, and that ensures that using processes are compatible (in terms of their
input assumptions) with the version and formats of the algorithms used to create the data

Conceptual Specimen Architecture 30

sets. Since XFM used in this mode creates a product in this sense, it must furnish the
corresponding descriptive metadata to PMD for entry into Product Metadata.

3.2.4 Other capabilities and considerations

As mentioned briefly above, the algorithmic characteristics of XFM-style algorithms
make them ideally suited to special purpose massively parallel hardware (MIMD or
SIMD). Ideally, the KBS/IA performance models (in Algorithm Metadata) will be able
to capture this aspect of these algorithms and, if such hardware is available, make suitable
use of it.

3.3 Use Case 3: Large scale data mining for science research

We begin by observing that the discussion of this use case is made difficult due to the
very large number of different approaches a research scientist may take in the
investigation of a problem or phenomenon of interest. Of these, we mention two in
particular with significant impact on the data mining technologies that might be
employed. First, there are the so-called boot-strap methods which attempt, via
clustering or similar aggregation approaches, to identify statistically significant patterns
or relationships in large data sources which had not been previously noticed. As an
alternative, we may cite the work of Kumar [16], in which a type of relationship which
was already known (an index) was used to guide development of a sophisticated
temperal-geographic classifier. This classifier was then able to identify other previously
undetected instances for further study. In the discussion which follows, we will have
Kumar s work in mind as a general model; but we will also attempt to indicate important
variations or excursions which might come into play if the research goals or application
domain were somewhat different.

As with the first two use cases, we separate the discussion into four partially over-lapping
general areas: development, validation, and registration of the data mining algorithm
(§3.3.1); optimization (§3.3.2); production (§3.3.3); and other capabilities and
considerations (§3.4.4).

3.3.1 Development, validation, and registration of the data mining algorithm

As indicated in the discussion above, an important initial question concerns whether there
already exist examples of the phenomena of interest, or high-fidelity models which could
be used to search for such examples. If so, the general techniques already described in
§3.3.1 above would be appropriate here, as well. If not, then boot-strapping methods
must be used. These can be very human expert intensive, since a clustering algorithm (to
use the most common approach as an example) will often extract relationships that are
not causal but simply reflect the statistical properties of the particular example that is
under examination. Thus, a review of the product by an expert is required; and this
review is typically the gating factor controlling overall throughput for this stage of the
end-to-end process.

Conceptual Specimen Architecture 31

In Kumar s work, this stage was able to rely on existing examples of indices to use
guide the development of a clustering algorithm so as to be able to extract and hence
reproduce the known phenomenon. The resulting classifier could then be applied to new
data to see if similar previously unknown instances might emerge.

Once a relation has been identified as having scientific merit (and here, the administrative
review and prioritization process comes into play), the algorithm to detect its presence
can be honed to achieve acceptable throughput as well as Type I and Type II error rates.
The KBS/IA can be used to generate test sets for validating these requirements (CBR),
and for generating the algorithm performance models for use by OPT.

3.3.2 Optimization

Because of the greater complexity of this problem when compared to our two previous
use cases, the optimizer may need to take a number of additional factors into account.
First, there is the issue of the physical architecture of the archived data, and the match (or
lack of it) between this physical architecture and the access patterns the algorithm will
require. One important example of this (which we mentioned in passing above) is the
difference between accessing wide geographic areas for which the sensor data was
collected fairly close together in time, on the one hand; versus a number of time
collections, spread over a considerable length of time, but for a narrowly circumscribed
area. The physical data architectures (that is, the position of the data sets on the tape or
spindle) to optimize these two types of retrieval are very different, and it will fall to the
optimizer attempt to understand these performance constraints and impacts and, where
possible, perform physical rearrangement (or pre-fetch) of the data to keep overall
throughput at acceptable levels. Optimizing the use of CACH will therefore form a
significant part of structuring the process flow.

It is also much more likely, when compared to the previously discussed use cases, that
the distributed capabilities of the network of KBS/IA will be required either through the
assembly and preparation of the data sets (VP/PTP/PRDG/DPRP), or through the direct
implementation of distributed data mining algorithms (e.g., as per Kargupta [9, §3.5]).
Data quality issues are also likely to arise here, particularly with regard to the processing
pedigree of the input data sets (see PMD and Product Metadata). The form of the output,
and metadata descriptions of it, also affect these two entities.

The full end-to-end process will probably also require feed-back and iteration, as
additional runs are required based on new discoveries and/or questions arising from
earlier runs. Hence, ongoing administrative review of the overall progress of the
research, with possible adjustments to priority, must be provided.

3.3.3 Production

The computational demands generated by this type of research can vary enormously,
depending on the complexity of the correlations being investigated, the size and

Conceptual Specimen Architecture 32

resolution of the data, the fidelity of models embedded in the algorithms, etc. Runs can
vary from near-interactive rates, on the one hand, to long term batch or back ground
processing, on the other. Depending on the amount and characteristics of the output
products, there may be a need for specialized analysis and display software (e.g., 3-D
immersive virtual reality displays). And as touched upon briefly above, we envision an
ongoing assessment of the scientific merit of the results that are being produced, and the
ability to adjust production and resource priority dynamically in response to stochastic
shifts in system loading as well as scientific merit and risk of the research.

Since the KBS/IA is one peer in a network, it will also be called upon to support the DM
activities initiated at remote sites. This, in turn, may result in additional loading on the
local resources (CPU, memory, disc, network bandwidth, etc.), and this loading must be
anticipated (when possible, using predictive models) and factored into optimized
dynamic adjustments to processing flows and relative priorities (OPT/PTP/I&KB)

3.3.4 Other capabilities and considerations

The use of the type of data mining capabilities such a KBS/IA could provide is still far
from routine in the Earth Science community, and it is still unclear, of the many
capabilities that could be provided, which will prove to be most useful in the long run.
Faced with this uncertainty, it seems best to focus first on a few areas which appear to
have the greatest possibility of success. By showing value on well-chosen demonstration
examples, the utility of the KBS/IA concept can be shown; and this can then serve as a
basis for incremental expansion to the inclusion of additional capabilities.

It should also be observed that the DM activities described here will often occur during
the first stage of other functional components. For example, an ED algorithm may be
required; but the development of the algorithm may entail the use of sophisticated DM
and I&KB activities. As noted at the outset, there are technology dependencies, and
capabilities refined in one area can then be enablers for advances or improvements in a
different but related area.

3.4 Use cases involving remote exploration

In this section we will consider another application domain for KBS systems and
technology: remote exploration. In previous work [9], we indicated how the KBS
algorithms developed under the IS/IDU program were applicable beyond Intelligent
Archives. The brief discussion here will extend those ideas, to show that not only the
algorithms, but the architectural principles also extend to this other application domain.

A key feature of the top level FBD is that the archive accepts from the sensor an input
data stream which is processed, including perhaps event detection or data transformation,
prior to storage. If we think of the variety of both embedded and mobile sensors required
to support remote exploration, the architectural analogy comes into focus. The biggest
difference between sensor input streams for the RE application, on the one hand, and for
the IA, on the other, is that the sampling rate of the supported sensors is very different:

Conceptual Specimen Architecture 33

on the order of hours between co-located samples for an Earth Observing sensor
supported by an IA, on the one hand; and perhaps 10 s to 100 s of Hz for embedded
sensors in an RE scenario, on the other. Hence, the focus of the intelligent algorithms
will shift from change detection and pattern recognition within imagery to something
much more like signal processing. But the idea of a filter sitting on and examining an
input stream, and extracting from it information concerning data quality, event detection,
and higher-level summaries (i.e., metadata) is the same in both cases. Indeed, some
algorithms (SMOL, KARG_2) which have a difficult time fitting into KBS/IA use cases
have a natural fit in RE scenarios.

A second analogy derives from the distributed nature of the required processing. In the
KBS/IA use cases, we saw how peers in a network of co-operating IAs could share not
only data but processing resources in an optimal way to satisfy user requests for products
(VP) and DM services. The analogy in a RE scenario is co-operating teams of semi-
autonomous sensors or other agents. If we think, for example, of a team of a few (7 to
20) mobile sensors communicating as they jointly perform a surveillance task, the need
for distributed algorithms, optimized role assignments, and dynamic adjustment in
response to uncertain events is clear.

As just suggested, the control algorithms to optimize resource utilization governed by
policy and priority also carries over into the RE domain. Model Predictive Control and
its associated modeling and state estimation requirements is equally applicable to both
types of use case. In the case of co-operating teams introduced above, important
objective functions requiring near-real-time dynamic reoptimization include: maximizing
the value of collected information; maximizing use of available bandwidth back to a
centralized controller; minimizing risk; assignment and reassignment of roles in response
to agent failures or degradation.

The monitoring functions in an IA data quality assessment, event detection on the input
data stream, state estimation and system status also have a strong analogy in RE use
cases. Examples include: health and status (e.g., habitat monitoring); detection and
avoidance of incipient failure modes; predictive models for space and solar weather; and
optimized route planning based on learned (i.e., modeled) terrain information.

The conclusion from this brief discussion is that not only the IS/IDU research and
resulting algorithms and technologies, but also the underlying architecture which unifies
these components into a useful whole, extends in a natural way from the KBS/IA case
studied in this paper to the KBS/RE case that is a high NASA priority.

Conceptual Specimen Architecture 34

4. Top-Level Software Architecture and Specimen Design

The purpose of this section is to briefly describe a candidat software architecture for a
KBS/IA capable of efficiently implementing the functional requirements and use cases
described in Sections 1 and 3 above. Together with Section 2, then, this section forms a
bridge to the next stage of research: development of software prototypes and
demonstrations.

The material is organized as follows. §4.1 introduces and motivates the selected
approach by showing how it represents a natural evolution from, and enhancement of,
current stand-alone archival technologies. In §4.2, the key components are described. In
§4.3, the Service Oriented Architecture ideas described in Section 2 above are illustrated
by means of a worked example based on KUMAR (see Use Case 3, §3.3 above). This is
further elaborated in §4.4 by showing how this design can be described using the Web
Ontology Language, OWL.

4.1 Top-Level Software Architecture and Specimen Design

4.1.1 Block Diagram of the Top-Level Software Architecture

This section discusses the top level software architecture of an intelligent archive (IA),
which follows the concept of service oriented architecture as described in section 2.2.
The discussion describes the evolution from a non-intelligent, traditional, and standalone
archive to an intelligent archive which can either be centralized or distributed
geographically.

4.1.1.1 The architecture of traditional archive with no intelligent data understanding

A traditional, standalone data archive architecture is shown in Figure 4.1. In this
architecture, the archive provides data it archived to the user through the interface
provided by the archive. The user usually first searches the archive catalog through the
user interface and, upon finding desired data, requests and obtains data from archive.
The three components, user interface, archived data, and the catalog, belong to the
archive. From the user point of view, interactions with the archive for obtaining data are
made available by the archive itself. When new data arrive, they are directly ingested and
cataloged in the archive catalog. In such a traditional archive, the content and format of
data available to users are fixed at the point in time when the data are ingested into the
archive.

Conceptual Specimen Architecture 35

Data User

User interface provided by the data archive

Archived Data Archive Catalog

Data to be archived

Data User

User interface provided by the data archive

Archived Data Archive Catalog

Data to be archived

Figure 4.1 - Traditional archive architecture

4.1.1.2 The architecture of standalone archives with limited intelligent data understanding

Intelligent data understanding (IDU) can be built in to a traditional standalone data
archives by imbedding IDU algorithms into the archive, as shown in Figure 4.2. In this
architecture, algorithms can be run on the archived data and the outputs of the algorithms
are archived as derived data, usually high level data products, information or knowledge,
and cataloged in the archive s catalog. The algorithms built into the archive usually
function independent of each other and work with only one or a few specific types of
archived data. The interfaces between individual algorithms and archived data are
algorithm-specific. There is no direct linkage between the algorithms and the catalog in
the archive. In other words, users can access the IDU results archived in the archive
storage but the algorithms themselves are not accessible to users. Such archives can well
serve communities of similar disciplines where user requirements can be largely met with
simple IDU algorithms.

Figure 4-2 Limited additional intelligence

4.1.1.3 The architecture multiple connected archives

Standalone data archives, such as has been shown in figure 4.2, either geographically
distributed or centralized, can be linked together to construct more useful archive with

IA User

User interface provided by the archive

Archive Storage Archive Catalog
Data to be
archived

Archive

IDU algorithm IDU algorithm

IA User

User interface provided by the archive

Archive Storage Archive Catalog
Data to be
archived

Archive

IDU algorithm IDU algorithm

Conceptual Specimen Architecture 36

more IDU algorithms and more content availability. Each connected archives are the
members of this linked archive. In order to connect multiple member archives,
improvements in the user interface are necessary so that users can access multiple
member archives by means of a single common user interface. For example, if two such
archives are connected, a common user interface that allows users to access storage and
catalogs in both archives is desirable. To further improve the functionality of the
archives, it will be desirable to build a common interface between the archive storage and
the catalogs so that only one common catalog is necessary in the linked archive (Figure
4.3). The common catalog, of course, can be populated by member archives, but the
content and the interface to the catalogs must shield the user from unwanted detail, so
that there is a single common logial catalog for the entire ensemble.

Figure 4.3 Distributed Archives

4.1.1.4 The service oriented software architecture of knowledge building system and
intelligent archive

Further improvements to multiple connected IAs can be achieved by building common
interfaces not just between user and the archives but also between IDU algorithms and
the archived data and between IDU algorithms and users. Based on Service Oriented
Architecture (SOA), a knowledge building system/intelligent archive (KBS/IA) can be
built with fundamental changes to architectures shown in Figures 4.1, 4.2, and 4.3. In
such a new architecture individual archived data and individual algorithms are considered
as completely independent components. Individual algorithms, as well as the catalog, are

IA User

User interface provided by the archive

Archive Storage Archive Catalog
Data to be
archived to
Archive 1

Archive 1

IDU algorithm IDU algorithm

Archive Storage
Data to be
archived to
Archive 2

IDU algorithm IDU algorithm

Archive 2

IA User

User interface provided by the archive

Archive Storage Archive Catalog
Data to be
archived to
Archive 1

Archive 1

IDU algorithm IDU algorithm

Archive Storage
Data to be
archived to
Archive 2

IDU algorithm IDU algorithm

Archive 2

Conceptual Specimen Architecture 37

considered as services (Figure 4.4). In Figure 4.4, the IA is also modeled as a component
in a complete data/information/knowledge system that includes sensor system and
different levels of data product generation systems. Different interfaces in such a system
are identified:

(1) a common service interface through which user interacts with the IA to request
different services, including catalog service, through which users interact with the
KBS/IA;

(2) a common storage interface through which services interact with archived storage;

(3) a user storage request interface through which users obtain stored contents (this
interface, however, can be integrated into the common service interface, as will be
discussed later);

(4) the feedback loop interface through which IA interacts with sensor system to
perform things like sensor tasking and dynamic data collections; and

(5) the sensor system including sensor and low level data production providing data
to the archive.

Figure 4.4 A Service Oriented Architecture for the KBS/IA

KBS/IA
User

Intelligent Archive

Archive
Storage

Sensor system,
low level data

production
system

Catalog services,
IDU Services,

General purpose
services

Data/Information/
Knowledge System (1)

(2)

(3)

(4)(5)

KBS/IA
User

Intelligent Archive

Archive
Storage

Sensor system,
low level data

production
system

Catalog services,
IDU Services,

General purpose
services

Data/Information/
Knowledge System (1)

(2)

(3)

(4)(5)

Conceptual Specimen Architecture 38

The direct user storage request interface, (3) in Figure 4.4, is useful only when content
(data, information, knowledge) requested by users is directly available in the archived
storage without any need of services, such as a complete granule of data. For all other
requests, going through this direct interface indicates that results of all services, including
IA services and general purpose services, must be pushed back to the archive storage
before users can obtain them. This, however, is not necessary because in many cases the
output of services may not need to be archived, especially for general data processing
service such as spatial subset and data format conversion. Further more, even in case of
requesting a complete data granule, the user usually still needs to request the catalog
service to search and locate the data granule first before he/she can actually request the
data. Therefore, this interface should be included in the more general common service
interface, i.e., interface (1).

4.1.1.5 Top-Level Software Architecture of KBS/IA and Specimen Design

The service oriented architecture shown in Figure 4.4 is at abstract level. A detailed top
level architecture of a KBS/IA is given in Figure 4.5, where different components
including the IA algorithms/service, archive storage, and catalog are shown. Figure 4.6 is
yet a more detailed diagram of a KBS/IA in the context of specific IDU algorithms, i.e.,
Vipin Kumar s time series, clustering, and association algorithms ([16]; [19]; [23]; [17]).
It also serves as a specimen design of the software architecture. Service/data flow
sequences and input/output contents are identified in this diagram with directional links
between different boxes. The components, interfaces, and flows are discussed in sections
4.2 and 4.3.

Figure 4.5 Detailed Top Level Software Architecture for KBS/IA

System status: CPU, storage, network, etc

D/I/K archive store catalog

Catalog/Metadata

IDU Algorithms

KBS/IA Algorithms/Models and other services

Se
ns

or
/o

bs
er

va
ti

on
 s

ys
te

m

KBS/IA client

Output Information

Semantic description, tables,
figures, trees, graphs, images.

Output Knowledge

Input Data/Information/Knowledge

Archive D/I/K store

Images (e.g., anomaly, cluster,
segmented images)

Low level data (e.g., radiance)

Model output (e.g., modeled NPP,
weather prediction data, map, image)

Derived data (e.g., SST)

System and Workflow Control

Workflow Management: planning, constructing,
executing workflow.

System Resource Management: monitoring and
optimizing system resources and process.

User profile: authentication, Authorization, etc

D
at

a
pr

od
uc

ti
on

 s
ys

te
m

 s
ys

te
m

LSDMDQ ED VP FB

Algorithm
knowledge Base

Daomain-specific
parameters: e.g.,
anomaly threshold,
event definition.

Derived information (e.g., land cover,
fPAR)

IDU output information (e.g., clustering)

Polygons/vectors (e.g., anomaly,
cluster, segmented images)

Trees, graphs, tables, figures

Previously Derived Knowledge

Type, content, potential
use, lineage, format etc.

Algorithm/service catalog

Algorithm/service
descriptions, input/output

types, preconditions,
consequences, etc.

Other Algorithms/Models

E.g., fPAR algorithms, Crop/forest
yield models, soil erosion models,

urban planning models.

Rules: e.g., examining
B, C relationship only

when A happens.

Other knowledge General purpose services

Virtual product catalog

Type, content, etc.

System status: CPU, storage, network, etc

D/I/K archive store catalog

Catalog/Metadata

IDU Algorithms

KBS/IA Algorithms/Models and other services

Se
ns

or
/o

bs
er

va
ti

on
 s

ys
te

m

KBS/IA client

Output Information

Semantic description, tables,
figures, trees, graphs, images.

Output Knowledge

Input Data/Information/Knowledge

Archive D/I/K store

Images (e.g., anomaly, cluster,
segmented images)

Low level data (e.g., radiance)

Model output (e.g., modeled NPP,
weather prediction data, map, image)

Derived data (e.g., SST)

System and Workflow Control

Workflow Management: planning, constructing,
executing workflow.

System Resource Management: monitoring and
optimizing system resources and process.

User profile: authentication, Authorization, etc

D
at

a
pr

od
uc

ti
on

 s
ys

te
m

 s
ys

te
m

LSDMDQ ED VP FB

Algorithm
knowledge Base

Daomain-specific
parameters: e.g.,
anomaly threshold,
event definition.

Derived information (e.g., land cover,
fPAR)

IDU output information (e.g., clustering)

Polygons/vectors (e.g., anomaly,
cluster, segmented images)

Trees, graphs, tables, figures

Previously Derived Knowledge

Type, content, potential
use, lineage, format etc.

Algorithm/service catalog

Algorithm/service
descriptions, input/output

types, preconditions,
consequences, etc.

Other Algorithms/Models

E.g., fPAR algorithms, Crop/forest
yield models, soil erosion models,

urban planning models.

Rules: e.g., examining
B, C relationship only

when A happens.

Other knowledge General purpose services

Virtual product catalog

Type, content, etc.

Conceptual Specimen Architecture 39

Figure 4.6 Detailed KBS/IA Architecture showing KUMAR flows

4.2 Key Components and Interfaces

4.2.1 Client/user interface layer

The first box at the top of Figure 4.5 is the client of the KBS/IA system. The client
serves as the interface between user and the system. The client can be implemented
either in web browsers or in any other graphical user interface. Users of the KBS/IA
system perform searches for and access to various D/I/K products and services through
the client. The major components of the client include the followings:

1) Interactive archive storage and algorithm/service discovery: the client interacts,
through system and work flow control component, with the algorithm and archive
storage catalogs in the system to search and locate available IDU algorithms, general
purpose services, and D/I/K products, including virtual products. The algorithms,
services and products can either be in one IA or in a number of different member IAs
in case of a distributed or federated IA system.

2) interactive algorithm/service request, including specifications of parameters to the
requested algorithm/service: upon the desired service being found through the

System status

D/I/KArchive store catalog

Catalog/Metadata

Kumar Algorithms

KBS/IA Algorithms/Models

Se
ns

or
/o

bs
er

va
ti

on
 s

ys
te

m
KBS/IA Client

Output Information

Output Knowledge

Input Data/Information/Knowledge

Archive store

fPar anomalies

System and Workflow Control

Workflow planner

System Resource
Management

User profile

D
at

a
pr

od
uc

ti
on

 s
ys

te
m

 s
ys

te
m

Ecosystem disturbance

SNN Clustering

Correlation, Association

Algorithm
knowledge Base

What is fPAR
anomalies?
What are ecosystem
events?

IDU output (e.g., clustering from SNN)

SST clusters

Associations (e.g. SST~NINO,
SOI~ NPP, fPAR~ NPP)

IDU output knowledge: E.g., why/how
eco-disturbances happened (over-

farming, deforestation, biomass burn)? Type, content, potential
use, lineage, format etc.

Algorithm/service catalog

Algorithm/service
descriptions,

input/output types,
preconditions,

consequences, etc.

Other Algorithms/Models

Crop/forest yield prediction models

Workflow
construction

Workflow
execution

Significant ecosystem
disturbance occurred.
Disturbances are cause by
climate changes

SST derived from AVHRR algorithm

NPP derived from CASA model

Climate indices (SOI, NINO, etc)

Land cover from MODIS algorithm

Rules of
Association.

fPAR from AVHRR

System status

D/I/KArchive store catalog

Catalog/Metadata

Kumar Algorithms

KBS/IA Algorithms/Models

Se
ns

or
/o

bs
er

va
ti

on
 s

ys
te

m
KBS/IA Client

Output Information

Output Knowledge

Input Data/Information/Knowledge

Archive store

fPar anomalies

System and Workflow Control

Workflow planner

System Resource
Management

User profile

D
at

a
pr

od
uc

ti
on

 s
ys

te
m

 s
ys

te
m

Ecosystem disturbance

SNN Clustering

Correlation, Association

Algorithm
knowledge Base

What is fPAR
anomalies?
What are ecosystem
events?

IDU output (e.g., clustering from SNN)

SST clusters

Associations (e.g. SST~NINO,
SOI~ NPP, fPAR~ NPP)

IDU output knowledge: E.g., why/how
eco-disturbances happened (over-

farming, deforestation, biomass burn)? Type, content, potential
use, lineage, format etc.

Algorithm/service catalog

Algorithm/service
descriptions,

input/output types,
preconditions,

consequences, etc.

Other Algorithms/Models

Crop/forest yield prediction models

Workflow
construction

Workflow
execution

Significant ecosystem
disturbance occurred.
Disturbances are cause by
climate changes

SST derived from AVHRR algorithm

NPP derived from CASA model

Climate indices (SOI, NINO, etc)

Land cover from MODIS algorithm

SST derived from AVHRR algorithm

NPP derived from CASA model

Climate indices (SOI, NINO, etc)

Land cover from MODIS algorithm

Rules of
Association.

fPAR from AVHRR

Conceptual Specimen Architecture 40

algorithm/service catalog, the client can request the service. If the requested service
includes interactive parameters, the client will provide appropriate interfaces to the
user to specify these parameters.

3) interactive stored and virtual product request: upon the desired stored D/I/K products
or virtual products being found through the catalogs, the client can request the
products. If a requested product is a virtual product, the related service or service
chain will be invoked to materialize the virtual product.

4) interactive workflow editing: if the product the client requests is neither available in
the stored D/I/K catalog nor in virtual product catalog, the user may interactively edit
a workflow for the desired product. The client provides a graphical interface for the
user to perform such editing.

In addition to the above four major components, other functionalities, such as data
manipulation and project management, can also be added to the client but these value-
added components should not be considered as inherent to the KBS/IA system.

In order for the client to interact with the KBS/IA s services, a common service
environment, which is a set of standard interfaces within the KBS/IA system, is required.
Depending on the scope of the KBS/IA, the standard interfaces can range from discipline-
or community-specific to open web services oriented.

4.2.2 IDU algorithm and service layer

The algorithms and services in this layer can be grouped into four categories/components:
1) a system and workflow management component which performs system status
monitoring, plans, constructs and manages workflows to produce new D/I/K products; 2)
an IDU algorithm component which provides various IDU algorithms to stored and
ingesting data; 3) a science model component which executing other scientific models
such as atmospheric and hydrologic models; and 4) a general data service component
which provides various general purpose data manipulation services such as subsetting,
map reprojection, and format conversion. Among the four components, only the first two
are necessary for a KBS/IA system while the last two are more general purpose services
and thus may or may not exist in a KBS/IA system.

4.2.2.1 IDU algorithms

The IDU algorithm is the core component of the KBS/IA system, although other
components, such as catalog and workflow control, are also necessary. Each IDU
algorithm is implemented as one or more services (or agents, modules) that can be
chained together to perform a specific IDU task. Ontology descriptions, such as
input/output types, precondition, and consequences, are provided in service profile for
each service/algorithm. Ontology descriptions also include knowledge, inference engine,
relationships, etc. Depending on the nature of the IDU algorithms, there may or may not
be interfaces between algorithms/services and the archive users. For example, interfaces
are needed for certain supervised classifications in which interactive parameterizations
are required, while no interface is required for some unsupervised clustering algorithm.

Conceptual Specimen Architecture 41

Algorithm interfaces are useful for experienced users who have domain knowledge and
are familiar with the algorithms. For general users of the archive, who are interested in
finding and obtaining D/I/K but are not specifically interested in how the D/I/K are
derived, the algorithm interfaces are less important.

4.2.2.2 System and workflow control

The system and workflow control service component contains various services for
monitoring, configuring, managing, and tasking software/hardware/data resources and for
planning, constructing, managing and executing workflows. In most case, workflow
construction is an automated process in which services are chained based on the user
requirement and service descriptions. For example, a simple event detection algorithm of
vegetation dynamics may use archived time series of a vegetation index as baseline to
detect sudden increase/decrease in current vegetation activities. The workflow of this
service can be automatically constructed based on the ontology descriptions of the
vegetation index computation equation (e.g., ratio of near infrared reflectance to red
reflectance), the index baseline computation equation (e.g., precedent 12-month values,
precedent three-year averages), and the archived time series data. When new data is
ingested into the archive system, the algorithm calculates the vegetation index and
compares it with the baseline index value (which itself is time-variant as new data is
ingested). If the difference is larger than a predefined threshold, a high/low anomaly
alarm is then issued. The result of such event detection can in turn activate next step in
the KBS/IA system, such as sensor re-tasking, especially in emergency management
scenario (e.g., wild fire). While automatic workflow construction and execution is
important in a KBS/IA system, an experienced user of the algorithm may want to
manually construct the workflow and submit it to the system. Thus, interfaces between
individual IDU algorithms and users are also required.

4.2.2.3 Other algorithms and science models

This component contains algorithms and science models that are not belong to the IDU
algorithms. These include, for example, algorithm of calculating fraction of
photosynthetically active radiation absorbed by vegetation (fPAR) and models of
deriving net primary production, potential soil erosion, and wild fire risk index. These
algorithms and models are not considered as necessary components of a KBS/IA system
but they are associated, either directly or indirectly, with the IDU algorithms. On one
hand, the output of these algorithms/models (e.g., fPAR) can serve as input of IDU
algorithms. On the other hand, the output of IDU algorithms (e.g., data quality,
clustering, fractal dimensions) can also be used as input as these algorithms/models.

4.2.2.4 General data service

The general data service component contains services that may be required for general
data processing and are not specific to any particular IDU algorithm. These may include
such services as spatial, temporal, and parameter subsetting, georectification and
reprojection, data format conversion, and so on. Although this is not a necessary

Conceptual Specimen Architecture 42

component of a KBS/IA system, the services provided in this component is often
indispensable for an archive system.

4.2.3 Catalog

The catalog together with the system and workflow control system composes a special
kind of service for a KBS/IA system, i.e., the registry service. This service provides
necessary information for the KBS/IA clients to search, find, access, and obtain
algorithms and services available from the system. It also enables algorithms/services
implemented in the system to announce and publish themselves. The catalog provides
three types of information: algorithm/service catalog, stored I/D/K product catalog, and
virtual I/D/K product catalog. The algorithm/service catalog contains information about
available services in the KBS/IA system, includes IDU and non-IDU algorithms, science
models, and other general purpose data services. The stored I/D/K product catalog
contains information about the products actually stored in the archive storage. These
products are readily available to users without needing further processing. The virtual
product catalog contains information about products that can readily be produced but are
not materialized and stored in the archive storage. The virtual products are actually
workflows that can, upon being executed, produce real products.

4.2.4 Archive Storage

This archive storage includes D/I/K which is kept in the storage area of an archive. The
D/I/K included in this area can be accessed to by clients, algorithms/services, and catalog
of the KBS/IA. For any specific IDU algorithm, the content in the archive storage can be
distinguished as an input component and an output component. The input to an IDU
algorithm is usually data or information and the output is usually information or
knowledge. For different algorithms, the output of one can be the input of another. For
example, the input to a spatial correlation data mining algorithm may be the output of an
image segmentation algorithm or data clustering algorithm. The two arrows in the
archive D/I/K store in figure 4.5 are examples of this input/output relationship. The

content in the archive storage is accessed to by the catalog and various
algorithms/services (see the two block arrows linking the storage box and the algorithm
and the catalog boxes). A set of standard interface protocols are required to perform
these accesses. Similar to the common service environment discussed in section 4.2.1,
the scope of standardization of storage access can range from discipline- or
community-specific to a wide open environment such as the entire internet.

4.3 Service and Data Flows

The service and data flows of IDU algorithms in a KBS/IA system is shown in figure 4.6,
by taking Vipin Kumar s algorithms as examples. In this diagram, the service flows are
indicated using green arrows. The input data flows are indicated using red arrows. The
output data flows are indicated using the pink arrows. The linkage between the IDU
algorithms and the algorithm knowledge base are shown in blue arrows. The dotted
orange arrows indicate how the output of one IDU algorithm becomes the input of

Conceptual Specimen Architecture 43

another IDU algorithm. The block arrows among different components are still kept in
this diagram to show the interfaces among these components.

The main event/data flows include the followings:

1) A KBS/IA system user requests Kumar s algorithms through the system s client
interface.

2) The client submits the user s information to system control service to conduct
user authentication and authorization.

3) The workflow planner communicates with the algorithm catalog in the system
catalog to find the specific IDU algorithm and the service profile of the algorithm,
including precondition, input/output, and consequences of executing the
algorithm.

4) The workflow planner communicates with the storage catalog in the system
catalog to check the status of required input contents.

5) The workflow planner checks with the system status monitoring service and
system resources managements services to learn the system status and resources
availability in order to perform workflow construction.

6) The workflow construction service constructs an executable workflow required to
complete the requested algorithm. The workflow construction service can also
interact with the client to allow the requesting user to edit and construct the
workflow.

7) The workflow execution service talks with system status and resources
management to execute the workflow at optimum system status.

8) The IDU algorithm is invoked and executed.
9) The necessary input D/I/K to the algorithm is obtained from the archive storage or

from the system ingesting data.
10) The output I/K of the algorithm is stored to the archive storage and/or returned to

the request users through the client interface.
11) The catalog is updated with the latest addition to the archive store.
12) The outcome of the algorithm may also result in requests to observation system

such as the sensor re-tasking due to the detection of a severe ecosystem
disturbance (e.g., wild fire). This, in turn, may result in actions in the low level
data processing system, the ingestion of new data into the archive store, and the
update of the archive store catalog.

4.4 OWL-S Examples for Kumar s Algorithms

The Kumar s algorithms shown in figure 4.6 can be described using Web Ontology
Language for Service (OWL-S) ([21]; [20]). The followings three OWL-S examples
used to describe the algorithms: 1) top level service definition, which includes the
references to service profile, service process model, and service process grounding; 2)
service profile, which includes information of the service provider, service function
description, service category, and service parameters; and 3) service process, which
describes a service process and control model such as inputs, outputs, preconditions,
effects, and component sub-processes.

Conceptual Specimen Architecture 44

4.4.1 Top level service definition

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE uridef (View Source for full doctype...)>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"
 xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl#">
 <owl:Ontology rdf:about="">
 <owl:versionInfo>$Id: Kumar__Pattern_Service.owl,v 1.0 2004/10/02 02:10:14 martin Exp $</owl:versionInfo>
 <rdfs:comment>This ontology represents the Kumar's pattern service description for the Intellignet Archive
example.</rdfs:comment>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />
 <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl" />
 <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl" />
 </owl:Ontology>
 <service:Service rdf:ID="Kumar_Pattern_Service">
 <!-- Reference to the Profile -->
 <service:presents rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Profile.owl#Profile_Kumar_Pattern" />
 <!-- Reference to the Process Model -->
 <service:describedBy rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel" />
 <!-- Reference to the Grounding -->
 <service:supports rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Grounding.owl#Grounding_Kumar_Pattern" />
 </service:Service>
 </rdf:RDF>

4.4.2 Service profile

<?xml version="1.0" encoding="ISO-8859-1" ?>
 <!DOCTYPE uridef (View Source for full doctype...)>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:actor="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"
 xmlns:addParam="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"
 xmlns:profileHierarchy="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"
 xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl#">
 <owl:Ontology rdf:about="">
 <owl:versionInfo>$Id: Kumar_Profile.owl,v 1.0 2004/10/3 02:10:14 martin Exp $</owl:versionInfo>
 <rdfs:comment>Kumar's Association Example for OWL-S Profile description</rdfs:comment>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Process.owl" />
 <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl" />
 <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl" />
 </owl:Ontology>
 <!-- ### -->
 <!-- # Instance Definition of Kumar's pattern service #-->
 <!-- ### -->
 <profileHierarchy:Kumar_Pattern rdf:ID="Profile_Kumar_Pattern">
 <!-- reference to the service specification -->

http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.w3.org/2001/XMLSchema#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl#">
http://www.daml.org/services/owl-s/1.0/Service.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Profile.owl#Profile_Kumar_Pattern"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel"
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Grounding.owl#Grounding_Kumar_Pattern"
http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://www.daml.org/services/owl-s/1.0/Process.owl#"
http://www.daml.org/services/owl-s/1.0/Profile.owl#"
http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Profile.owl#">
http://www.daml.org/services/owl-s/1.0/Service.owl"
http://www.daml.org/services/owl-s/1.0/Profile.owl"
http://www.daml.org/services/owl-s/1.0/ActorDefault.owl"
http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl"
http://www.daml.org/services/owl-s/1.0/Process.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl"
http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl"

Conceptual Specimen Architecture 45

 <service:presentedBy rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Service.owl#Kumar_Pattern_Service" />
 <!-- reference to the process model specification -->
 <profile:has_process rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel" />
 <profile:serviceName>Kumar_Pattern_Service</profile:serviceName>
 <profile:textDescription>This service is to find spatio-temporal patterns in Earth science data.
 This typically involves associations, clusters, predictive models and trends</profile:textDescription>

 <profile:contactInformation>
 <actor:Actor rdf:ID="Kumar_Pattern">
 <actor:name>Lab for Advanced Information Technology and Standards</actor:name>
 <actor:title>Operator</actor:title>
 <actor:phone>301 552 3829</actor:phone>
 <actor:fax>301 552 9671</actor:fax>
 <actor:email>wyang1@gmu.edu</actor:email>
 <actor:physicalAddress>9801 Greenbelt Rd. Suit 316-317, Lanham, MD, 20706</actor:physicalAddress>
 <actor:webURL>http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>
 </actor:Actor>
 </profile:contactInformation>
 <profile:contactInformation>
 <actor:Actor rdf:ID="IDU-information">
 <actor:name>Wenli Yang</actor:name>
 <actor:title>Principal Scientist</actor:title>
 <actor:phone>301 552 3829</actor:phone>
 <actor:fax>301 552 9671</actor:fax>
 <actor:email>wyang1@gmu.edu</actor:email>
 <actor:physicalAddress>9801 Greenbelt Rd. Suit 316-317, Lanham, MD, 20706</actor:physicalAddress>
 <actor:webURL>http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>
 </actor:Actor>
 </profile:contactInformation>

 <!-- Specification of the service category using NAICS -->
 <profile:serviceCategory>
 <addParam:ISO19119 rdf:ID="ISO19119-category">
 <profile:value>Data Mining</profile:value>
 <profile:code>****</profile:code>
 </addParam:ISO19119>
 </profile:serviceCategory>

 <!-- Descriptions of IOPEs -->
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#fPAR" />
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#SST" />
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#NPP" />
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Climate_Indices" />
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Land_Cover" />
 <profile:hasInput rdf:resource="http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Association_Rules" />
 </profileHierarchy:Kumar_Pattern>
 </rdf:RDF>

4.4.3 Service process

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE uridef[]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"

http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Service.owl#Kumar_Pattern_Service"
file:has_process
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Kumar_Pattern_ProcessModel"
file:serviceName>Kumar_Pattern_Service</profile:serviceName>
file:textDescription>This
file:textDescription>
file:contactInformation>
http://ws.laits.gmu.edu/services/Kumar_Pattern.html</actor:webURL>
file:contactInformation>
file:contactInformation>
file:contactInformation>
file:serviceCategory>
file:value>Data
file:code>****</profile:code>
file:serviceCategory>
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#fPAR"
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#SST"
file:hasInput
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#NPP"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Climate_Indices"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Land_Cover"
file:hasInput
http://ws.laits.gmu.edu/services/owl-
s/1.0/Kumar/Kumar_Process.owl#Association_Rules"
http://www.w3.org/1999/02/22-rdf-syntax-ns#"
http://www.w3.org/2000/01/rdf-schema#"
http://www.w3.org/2002/07/owl#"
http://www.daml.org/services/owl-s/1.0/Service.owl#"
http://www.daml.org/services/owl-s/1.0/Process.owl#"
http://www.daml.org/services/owl-s/1.0/Profile.owl#"

Conceptual Specimen Architecture 46

 xmlns:actor="http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"
 xmlns:addParam="http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"
 xmlns:profileHierarchy="http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"
 xmlns:concepts = "http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/concepts.owl#"
 xmlns="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#">

 <owl:Ontology rdf:about="">
 <owl:versionInfo>$Id: Kumar_Process.owl,v 1.0 2004/10/03 23:06:47 martin Exp $</owl:versionInfo>
 <rdfs:comment> Kumar's pattern Example for OWL-S Process Model</rdfs:comment>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Service.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Profile.owl" />
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.0/Process.owl" />
 <owl:imports rdf:resource="http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl" />
 </owl:Ontology>

 <!-- ### -->
 <!-- Instance Definition of Kumar's Pattern Process Model -->
 <process:ProcessModel rdf:ID="Kumar_Pattern_ProcessModel">
 <process:hasProcess rdf:resource="#Kumar_Process" />
 <service:describes rdf:resource="#Kumar_Pattern_Service"/>
 </process:ProcessModel>

 <!-- ## -->
 <!-- Definition of top level Process as a composite process -->

<process:CompositeProcess rdf:ID="Kumar_Process">
 <rdfs:label> This is the top level process for Kumar's pattern </rdfs:label>
 <process:composedOf>
 <process:Sequence>
 <process:components rdf:parseType="Collection">
 <process:AtomicProcess rdf:about="#Ecosystem_Disturbance>

 <process:AtomicProcess rdf:about="#SNN_Clustering"/>

 <process:CompositeProcess rdf:about="#Correlation_Association/>

</process:components>
 </process:Sequence>
 </process:composedOf>

</process:CompositeProcess>

 <!-- ## -->
 <!-- Ecosystem disturbance (ATOMIC)-->
 <process:AtomicProcess rdf:ID="Ecosystem_Disturbance">
 <process:hasInput rdf:resource="#fPAR"/>
 <process:hasOutput rdf:resource="#fPAR_Anomalies_Out"/>
 </process:AtomicProcess>
 <process:Input rdf:ID="fPAR">
 <process:parameterType rdf:resource="&concepts;#fPAR"/>
 </process:Input>
 <process:UnConditionalOutput rdf:ID="fPAR_Anomalies_Out">
 <process:parameterType rdf:resource="&concepts;#fPAR_Anomalies_Out"/>
 </process:UnConditionalOutput>

 <!-- ## -->
 <!-- SNN Clustering (ATOMIC)-->
 <process:AtomicProcess rdf:ID="SNN_Clustering">
 <process:hasInput rdf:resource="#SST"/>
 <process:hasInput rdf:resource="#NPP"/>
 <process:hasInput rdf:resource="#Climate_Indices"/>
 <process:hasInput rdf:resource="#Land_Cover"/>
 <process:hasOutput rdf:resource="#SNN_Clustering_Out"/>
 </process:AtomicProcess>
 <process:Input rdf:ID="SST">
 <process:parameterType rdf:resource="&concepts;#SST"/>
 </process:Input>

http://www.daml.org/services/owl-s/1.0/ActorDefault.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileAdditionalParameters.owl#"
http://www.daml.org/services/owl-s/1.0/ProfileHierarchy.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/concepts.owl#"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Process.owl#">
http://www.daml.org/services/owl-s/1.0/Service.owl"
http://www.daml.org/services/owl-s/1.0/Profile.owl"
http://www.daml.org/services/owl-s/1.0/Process.owl"
http://ws.laits.gmu.edu/services/owl-s/1.0/Kumar/Kumar_Service.owl"

Conceptual Specimen Architecture 47

 <process:Input rdf:ID="NPP">
 <process:parameterType rdf:resource="&concepts;#NPP"/>
 </process:Input>
 <process:Input rdf:ID="Climate_Indices">
 <process:parameterType rdf:resource="&concepts;#Climate_Indices"/>
 </process:Input>
 <process:Input rdf:ID="Land_Cover">
 <process:parameterType rdf:resource="&concepts;#Land_Cover"/>
 </process:Input>
 <process:UnConditionalOutput rdf:ID="SST_Clustering_Out">
 <process:parameterType rdf:resource="&concepts;#SST_Clustering_Out"/>
 </process:UnConditionalOutput>

 <!-- ## -->
 <!-- Correlation & Association (ATOMIC) -->
 <process:AtomicProcess rdf:ID="Correlation_Association">
 <process:hasInput rdf:resource="#fPAR_Anomalies_Out"/>
 <process:hasInput rdf:resource="#SST_Clustering_Out"/>
 <process:hasInput rdf:resource="#Association_Rules"/>
 <process:hasOutput rdf:resource="#Association_Out"/>
 </process:AtomicProcess>
 <process:Input rdf:ID="Association_Rules">
 <process:parameterType rdf:resource="&concepts;#Association_Rules"/>
 </process:Input>
 <process:UnConditionalOutput rdf:ID="Association_Out">
 <process:parameterType rdf:resource="&concepts;#Association_Out"/>
 </process:UnConditionalOutput>
</rdf:RDF>

Conceptual Specimen Architecture 48

5. Conclusion

The work described in this paper represents both the capstone of work that has been
ongoing for some time as well as a transition to the next phase of the research:
prototyping and demonstration. As a capstone document, it clearly shows how the
IS/IDU research and development projects support the key functional requirements for an
intelligent archive as part of a knowledge building system. The paper also shows that the
necessary critical technology infrastructure is in place; and that reasonable achievable
software implementations can be built to support and use the algorithms, on the one hand,
and to fully utilize the capabilities provided by existing infrastructure, on the other. The
Use Case discussions wrap this together in a compelling way, showing how a variety of
powerful and very useful capabilities and concepts of operation can be supported by the
envisioned IA conceptual specimen architecture.

With this as a basis, the next step appears to be to show that this vision can be realized in
practice. By prototyping and demonstrating selected challenging sub-functions using
IS/IDU algorithms on real data, it will be possible to make a strong case that the next
generation of intelligent archive technology is achievable, and will provide quantum
levels of improvement over current capabilities at acceptable cost and risk.

Conceptual Specimen Architecture 49

References:

Papers Relating to Intelligent Archives

All the following papers are available at:
http://daac.gsfc.nasa.gov/IDA/presentations.shtml

[1] Conceptual Study Of Intelligent Archives of the Future, Ramapriyan, X. et al.,
NASA Technical Report, August 2003

[2] Intelligent Archive Visionary Use Case: Advanced Weather Forecast Scenario,
Harberts, R. and Roelofs, S., NASA Technical Report, July 2003

[3] Intelligent Archive Visionary Use Case: Precision Architecture Scenario,
Harberts, R. and Roelofs, S., NASA Technical Report, July 2003

[4] Intelligent Archive Visionary Use Case: Virtual Observatories, Harberts, R. and
Roelofs, S., NASA Technical Report, July 2003

[5] Moving from Data and Information Systems to Knowledge Building Systems:
Issues of Scale and Other Research Challenges, McConaughy, G. and McDonald, K,
NASA Technical Report, September 2003

[6] Optimizing Performance in Intelligent Archives, Morse, H. and Isaacs, D., NASA
Technical Report, January 2003

[7] Virtual Data Products in an Intelligent Archive, Clausen, M. and Lynnes, NASA
Technical Report, July 2003.

[8] Automated Data Quality Assessment in the Intelligent Archive, Isaac, D. and
Lynnes, C., NASA Technical Report, January 2003.

[9] Assessment of the Applicability of IDU Research and Technologies to a Proposed
Intelligent Archive Test Bed, Morse, S., NASA Technical Report, July 2004

Papers relating to Cyberinfrastructure and IA Software Architecture

[10] Foster I., C. Kesselman, J.M. Nick and S. Tuecke, 2002. The Physiology of the
Grid: An open Grid services architecture for distributed systems integration. Open Grid
Service Infrastructure WG, Global Grid Forum.
http://www.globus.org/research/papers/ogsa.pdf.

[11] Foster I., C. Kesselman and S. Tuecke, 2001. The Anatomy of the Grid

Enabling
Scalable Virtual Organizations. Intl. J. of High Performance Computing Applications,
15(3), 200-222.

http://daac.gsfc.nasa.gov/IDA/presentations.shtml
http://www.globus.org/research/papers/ogsa.pdf

Conceptual Specimen Architecture 50

[12] Foster, I. and C. Kesselman, editors, 1999. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan Kaufmann Publishers.

[13] Foster I. and C. Kesselman 1998. The Globus Project: A Status Report. Proc.
IPPS/SPDP '98 Heterogeneous Computing Workshop, pp. 4-18.
ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf

[14] GGF, 2004. The WS-Resource Framework. http://www.globus.org/wsrf/.

[15] Globus, 2004. Globus homepage, http://www.globus.org

[16] Kumar, V., Steinbach, M., Tan, P., Potter, C., and Klooster, S., 2004, Discovery of
Changes from the Global Carbon Cycle and Climate System Using Data Mining,
http://www.esto.nasa.gov/conferebces/estc2004/papers/b9p2.pdf

[17] Levent, E., Steinbach, M., and Kumar, V., 2003, Finding Clusters of Different
Sizes, Shapes, and Densities in Noisy, High Dimensional Data, SIAM International
Conference on Data Mining, http://www-users.cs.umn.edu/~kumar/papers/SIAM_snn.pdf

[18] OASIS, 2004. Organization for the Advancement of Structured Information
Standards (OASIS) homepage. http://www.oasis-open.org/home/index.php.

[19] Tan, P., Steinbach, M., Kumar, V., Potter, C., Klooster, S., and Torregrosa., A.,
2001, Finding Spatio-Temporal Patterns in Earth Science Data, KDD 2001 Workshop on
Temoral Data Mining, http://www-users.cs.umn.edu/~kumar/papers/spatio_temoral15.pdf

[20] The DAML Services Coalition, 2002, DAML-S: Semeantic Markup for Web
Services, http://www.daml.org/services/daml-s/0.7/daml-s.html

[21] The OWL Services Coalition, 2003, OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.0/owl-s.pdf

[22] W3C, 2004. World-Wide Web Consortium (W3C) homepage, http://www.w3c.org

[23] Zhang, P., Huang, Y., Shekhar, S., and Kumar, V., 2003, Correlation Analysis of
Spatial Time Series Databases: A Filter-and-Refine Approach, Proceedings of the
Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining, Seoul,
Korea, http://www-users.cs.umn.edu/~kumar/papers/pakdd03a.pdf

ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf
http://www.globus.org/wsrf/
http://www.globus.org
http://www.esto.nasa.gov/conferebces/estc2004/papers/b9p2.pdf
http://www-users.cs.umn.edu/~kumar/papers/SIAM_snn.pdf
http://www.oasis-open.org/home/index.php
http://www-users.cs.umn.edu/~kumar/papers/spatio_temoral15.pdf
http://www.daml.org/services/daml-s/0.7/daml-s.html
http://www.daml.org/services/owl-s/1.0/owl-s.pdf
http://www.w3c.org
http://www-users.cs.umn.edu/~kumar/papers/pakdd03a.pdf

